417 research outputs found

    Gravitational strings. Do we see one?

    Full text link
    I present a class of objects called gravitational strings (GS) for their similarity to the conventional cosmic strings: even though the former are just singularities in flat spacetime, both varieties are equally "realistic", they may play equally important cosmological r\^ole and their lensing properties are akin. I argue that the enigmatic object CSL-1 is an evidence in favor of the existence of GS.Comment: The published version. Minor correction

    Modelling of the evolution of a droplet cloud in a turbulent flow

    Get PDF
    The effects of droplet inertia and turbulent mixing on the droplet number density distribution in a turbulent flow field are studied. A formulation of the turbulent convective diffusion equation for the droplet number density, based on the modified Fully Lagrangian Approach, is proposed. The Fully Lagrangian Approach for the dispersed phase is extended to account for the Hessian of transformation from Eulerian to Lagrangian variables. Droplets with moderate inertia are assumed to be transported and dispersed by large scale structures of a filtered field in the Large Eddy Simulation (LES) framework. Turbulent fluctuations, not visible in the filtered solution for the droplet velocity field, induce an additional diffusion mass flux and hence additional dispersion of the droplets. The Lagrangian formulation of the transport equation for the droplet number density and the modified Fully Lagrangian Approach (FLA) make it possible to resolve the flow regions with intersecting droplet trajectories in the filtered flow field. Thus, we can cope successfully with the problems of multivalued filtered droplet velocity regions and caustic formation. The spatial derivatives for the droplet number density are calculated by projecting the FLA solution on the Eulerian mesh, resulting in a hybrid Lagrangian–Eulerian approach to the problem. The main approximations for the method are supported by the calculation of droplet mixing in an unsteady one-dimensional flow field formed by large-scale oscillations with an imposed small-scale modulation. The results of the calculations for droplet mixing in decaying homogeneous and isotropic turbulence are validated by the results of Direct Numerical Simulations (DNS) for several values of the Stokes number

    Colloquium: Comparison of Astrophysical and Terrestrial Frequency Standards

    Full text link
    We have re-analyzed the stability of pulse arrival times from pulsars and white dwarfs using several analysis tools for measuring the noise characteristics of sampled time and frequency data. We show that the best terrestrial artificial clocks substantially exceed the performance of astronomical sources as time-keepers in terms of accuracy (as defined by cesium primary frequency standards) and stability. This superiority in stability can be directly demonstrated over time periods up to two years, where there is high quality data for both. Beyond 2 years there is a deficiency of data for clock/clock comparisons and both terrestrial and astronomical clocks show equal performance being equally limited by the quality of the reference timescales used to make the comparisons. Nonetheless, we show that detailed accuracy evaluations of modern terrestrial clocks imply that these new clocks are likely to have a stability better than any astronomical source up to comparison times of at least hundreds of years. This article is intended to provide a correct appreciation of the relative merits of natural and artificial clocks. The use of natural clocks as tests of physics under the most extreme conditions is entirely appropriate; however, the contention that these natural clocks, particularly white dwarfs, can compete as timekeepers against devices constructed by mankind is shown to be doubtful.Comment: 9 pages, 2 figures; presented at the International Frequency Control Symposium, Newport Beach, Calif., June, 2010; presented at Pulsar Conference 2010, October 12th, Sardinia; accepted 13th September 2010 for publication in Reviews of Modern Physic

    Constraints on the acceleration of the solar system from high-precision timing

    Full text link
    Many astronomers have speculated that the solar system contains undiscovered massive planets or a distant stellar companion. The acceleration of the solar system barycenter can constrain the mass and position of the putative companion. In this paper we use the most recent timing data on accurate astronomical clocks (millisecond pulsars, pulsars in binary systems and pulsating white dwarfs) to constrain this acceleration. No evidence for non-zero acceleration has been found; the typical sensitivity achieved by our method is a/c=a few times 10^{-19} s^{-1}, comparable to the acceleration due to a Jupiter-mass planet at 200 AU. The acceleration method is limited by the uncertainties in the distances and by the timing precision for pulsars in binary systems, and by the intrinsic distribution of the period derivatives for millisecond pulsars. Timing data provide stronger constraints than residuals in the motions of comets or planets if the distance to the companion exceeds a few hundred AU. The acceleration method is also more sensitive to the presence of a distant companion (> 300-400 AU) than existing optical and infrared surveys. We outline the differences between the effects of the peculiar acceleration of the solar system and the background of gravitational waves on high-precision timing.Comment: 28 pages including 7 figures; submitted to AJ on April 22, 200

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps

    CMB Anisotropy Induced by a Moving Straight Cosmic String

    Full text link
    We showed that the part of strings could be detected by optical method is only 20% from the total available amount of such objects, therefore the gravitational lensing method has to be "completed" by CMB one. We found the general structure of the CMB anisotropy generated by a cosmic string for simple model of straight string moving with constant velocity. For strings with deficit angle 1-2 arcsec the amplitude of generated anisotropy has to be 15-30 muK (the corresponding string linear density is (G mu) ~ 10^{-7} and energy is GUT one, 10^{15} GeV). To use both radio and optical methods the deficit angle has to be from 0.1 arcsec to 5-6 arcsec. If cosmic string can be detected by optical method, the length of corresponding brightness spot of anisotropy has to be no less than 100 degrees.Comment: 6 pages, 1 Postscript figure, will be published in proceedings of QUARKS-2008, 15th International Seminar on High Energy Physics, Sergiev Posad, Russia, 23-29 May, 200

    Shapiro Effect as a Possible Cause of the Low-Frequency Pulsar Timing Noise in Globular Clusters

    Get PDF
    A prolonged timing of millisecond pulsars has revealed low-frequency uncorrelated noise, presumably of astrophysical origin, in the pulse arrival time (PAT) residuals for some of them. In most cases, pulsars in globular clusters show a low-frequency modulation of their rotational phase and spin rate. The relativistic time delay of the pulsar signal in the curved space time of randomly distributed and moving globular cluster stars (the Shapiro effect) is suggested as a possible cause of this modulation. Given the smallness of the aberration corrections that arise from the nonstationarity of the gravitational field of the randomly distributed ensemble of stars under consideration, a formula is derived for the Shapiro effect for a pulsar in a globular cluster. The derived formula is used to calculate the autocorrelation function of the low-frequency pulsar noise, the slope of its power spectrum, and the behavior of the σz\sigma_z statistic that characterizes the spectral properties of this noise in the form of a time function. The Shapiro effect under discussion is shown to manifest itself for large impact parameters as a low-frequency noise of the pulsar spin rate with a spectral index of n=-1.8 that depends weakly on the specific model distribution of stars in the globular cluster. For small impact parameters, the spectral index of the noise is n=-1.5.Comment: 23 pages, 6 figure

    Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves

    Get PDF
    We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best root-mean-square timing residuals in this set are ~30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our dataset to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h_c (1 yr^-1) < 7x10^-15 (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.Comment: To be submitted to Ap

    Observing gravitational wave bursts in pulsar timing measurements

    Full text link
    We propose a novel method for observing the gravitational wave signature of super-massive black hole (SMBH) mergers. This method is based on detection of a specific type of gravitational waves, namely gravitational wave burst with memory (BWM), using pulsar timing. We study the unique signature produced by BWM in anomalous pulsar timing residuals. We show that the present day pulsar timing precision allows one to detect BWM due to SMBH mergers from distances up to 1 Gpc (for case of equal mass 10^8 Msun SMBH). Improvements in precision of pulsar timing together with the increase in number of observed pulsars should eventually lead to detection of a BWM signal due to SMBH merger, thereby making the proposed technique complementary to the capabilities of the planned LISA mission.Comment: 9 pages, 1 figure, generally matches the MNRAS versio
    corecore