1,045 research outputs found
X-ray image reconstruction from a diffraction pattern alone
A solution to the inversion problem of scattering would offer aberration-free
diffraction-limited 3D images without the resolution and depth-of-field
limitations of lens-based tomographic systems. Powerful algorithms are
increasingly being used to act as lenses to form such images. Current image
reconstruction methods, however, require the knowledge of the shape of the
object and the low spatial frequencies unavoidably lost in experiments.
Diffractive imaging has thus previously been used to increase the resolution of
images obtained by other means. We demonstrate experimentally here a new
inversion method, which reconstructs the image of the object without the need
for any such prior knowledge.Comment: 5 pages, 3 figures, improved figures and captions, changed titl
Coherent X-ray Diffractive Imaging; applications and limitations
The inversion of a diffraction pattern offers aberration-free
diffraction-limited 3D images without the resolution and depth-of-field
limitations of lens-based tomographic systems, the only limitation being
radiation damage. We review our experimental results, discuss the fundamental
limits of this technique and future plans.Comment: 7 pages, 8 figure
High-resolution ab initio three-dimensional X-ray diffraction microscopy
Coherent X-ray diffraction microscopy is a method of imaging non-periodic
isolated objects at resolutions only limited, in principle, by the largest
scattering angles recorded. We demonstrate X-ray diffraction imaging with high
resolution in all three dimensions, as determined by a quantitative analysis of
the reconstructed volume images. These images are retrieved from the 3D
diffraction data using no a priori knowledge about the shape or composition of
the object, which has never before been demonstrated on a non-periodic object.
We also construct 2D images of thick objects with infinite depth of focus
(without loss of transverse spatial resolution). These methods can be used to
image biological and materials science samples at high resolution using X-ray
undulator radiation, and establishes the techniques to be used in
atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte
Neutron time-of-flight measurements of charged-particle energy loss in inertial confinement fusion plasmas
Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4  keV and particle densities of n≈(12-2)×10^{24}  cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data
Design and Bolometer Characterization of the SPT-3G First-year Focal Plane
During the austral summer of 2016-17, the third-generation camera, SPT-3G,
was installed on the South Pole Telescope, increasing the detector count in the
focal plane by an order of magnitude relative to the previous generation.
Designed to map the polarization of the cosmic microwave background, SPT-3G
contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and
dual-polarization pixels, read out using 68x frequency-domain multiplexing.
Here we discuss design, assembly, and layout of the modules, as well as early
performance characterization of the first-year array, including yield and
detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted
for publication: 27 August 201
Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data
We present measurements of the -mode polarization angular auto-power
spectrum () and temperature--mode cross-power spectrum () of the
cosmic microwave background (CMB) using 150 GHz data from three seasons of
SPTpol observations. We report the power spectra over the spherical harmonic
multipole range , and detect nine acoustic peaks in the
spectrum with high signal-to-noise ratio. These measurements are the most
sensitive to date of the and power spectra at and , respectively. The observations cover 500 deg, a fivefold increase
in area compared to previous SPTpol analyses, which increases our sensitivity
to the photon diffusion damping tail of the CMB power spectra enabling tighter
constraints on \LCDM model extensions. After masking all sources with
unpolarized flux mJy we place a 95% confidence upper limit on residual
polarized point-source power of at , suggesting that the damping tail
dominates foregrounds to at least with modest source masking. We
find that the SPTpol dataset is in mild tension with the model
(), and different data splits prefer parameter values that differ
at the level. When fitting SPTpol data at we
find cosmological parameter constraints consistent with those for
temperature. Including SPTpol data at results in a preference for
a higher value of the expansion rate (H_0 = 71.3 \pm
2.1\,\mbox{km}\,s^{-1}\mbox{Mpc}^{-1} ) and a lower value for present-day
density fluctuations ().Comment: Updated to match version accepted to ApJ. 34 pages, 17 figures, 6
table
Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data
We present a measurement of the -mode polarization power spectrum (the
spectrum) from 100 of sky observed with SPTpol, a
polarization-sensitive receiver currently installed on the South Pole
Telescope. The observations used in this work were taken during 2012 and early
2013 and include data in spectral bands centered at 95 and 150 GHz. We report
the spectrum in five bins in multipole space, spanning the range , and for three spectral combinations: 95 GHz 95 GHz, 95
GHz 150 GHz, and 150 GHz 150 GHz. We subtract small ( in units of statistical uncertainty) biases from these spectra and
account for the uncertainty in those biases. The resulting power spectra are
inconsistent with zero power but consistent with predictions for the
spectrum arising from the gravitational lensing of -mode polarization. If we
assume no other source of power besides lensed modes, we determine a
preference for lensed modes of . After marginalizing over
tensor power and foregrounds, namely polarized emission from galactic dust and
extragalactic sources, this significance is . Fitting for a single
parameter, , that multiplies the predicted lensed -mode
spectrum, and marginalizing over tensor power and foregrounds, we find
, indicating that our measured spectra are
consistent with the signal expected from gravitational lensing. The data
presented here provide the best measurement to date of the -mode power
spectrum on these angular scales.Comment: 21 pages, 4 figure
A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data
We present a measurement of the cosmic microwave background (CMB)
gravitational lensing potential using data from the first two seasons of
observations with SPTpol, the polarization-sensitive receiver currently
installed on the South Pole Telescope (SPT). The observations used in this work
cover 100 deg of sky with arcminute resolution at 150 GHz. Using a
quadratic estimator, we make maps of the CMB lensing potential from
combinations of CMB temperature and polarization maps. We combine these lensing
potential maps to form a minimum-variance (MV) map. The lensing potential is
measured with a signal-to-noise ratio of greater than one for angular
multipoles between . This is the highest signal-to-noise mass map
made from the CMB to date and will be powerful in cross-correlation with other
tracers of large-scale structure. We calculate the power spectrum of the
lensing potential for each estimator, and we report the value of the MV power
spectrum between as our primary result. We constrain the ratio
of the spectrum to a fiducial CDM model to be . Restricting ourselves to
polarized data only, we find . This measurement rejects the hypothesis of no lensing at
using polarization data alone, and at using both
temperature and polarization data.Comment: 16 pages, 8 figure
CMB Polarization B-mode Delensing with SPTpol and Herschel
We present a demonstration of delensing the observed cosmic microwave
background (CMB) B-mode polarization anisotropy. This process of reducing the
gravitational-lensing generated B-mode component will become increasingly
important for improving searches for the B modes produced by primordial
gravitational waves. In this work, we delens B-mode maps constructed from
multi-frequency SPTpol observations of a 90 deg patch of sky by subtracting
a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing
potential map estimated from the map of the
CIB. We find that our delensing procedure reduces the measured B-mode power
spectrum by 28% in the multipole range ; this is shown to be
consistent with expectations from theory and simulations and to be robust
against systematics. The null hypothesis of no delensing is rejected at . Furthermore, we build and use a suite of realistic simulations to
study the general properties of the delensing process and find that the
delensing efficiency achieved in this work is limited primarily by the noise in
the lensing potential map. We demonstrate the importance of including realistic
experimental non-idealities in the delensing forecasts used to inform
instrument and survey-strategy planning of upcoming lower-noise experiments,
such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
We study the consistency of 150 GHz data from the South Pole Telescope (SPT)
and 143 GHz data from the Planck satellite over the patch of sky covered by the
SPT-SZ survey. We first visually compare the maps and find that the residuals
appear consistent with noise after accounting for differences in angular
resolution and filtering. We then calculate (1) the cross-spectrum between two
independent halves of SPT data, (2) the cross-spectrum between two independent
halves of Planck data, and (3) the cross-spectrum between SPT and Planck data.
We find the three cross-spectra are well-fit (PTE = 0.30) by the null
hypothesis in which both experiments have measured the same sky map up to a
single free calibration parameter---i.e., we find no evidence for systematic
errors in either data set. As a by-product, we improve the precision of the SPT
calibration by nearly an order of magnitude, from 2.6% to 0.3% in power.
Finally, we compare all three cross-spectra to the full-sky Planck power
spectrum and find marginal evidence for differences between the power spectra
from the SPT-SZ footprint and the full sky. We model these differences as a
power law in spherical harmonic multipole number. The best-fit value of this
tilt is consistent among the three cross-spectra in the SPT-SZ footprint,
implying that the source of this tilt is a sample variance fluctuation in the
SPT-SZ region relative to the full sky. The consistency of cosmological
parameters derived from these datasets is discussed in a companion paper.Comment: 15 pages, 9 figures. Published in The Astrophysical Journal. Current
arxiv version matches published versio
- …