3,180 research outputs found

    Distinguished Cp(X) spaces

    Get PDF
    We continue our initial study of Cp(X) spaces that are distinguished, equiv., are large subspaces of RX , equiv., whose strong duals Lβ(X) carry the strongest locally convex topology. Many are distinguished, many are not. All Lβ(X) spaces are, as are all metrizable Cp(X) and Ck (X) spaces. To prove a space Cp(X) is not distinguished, we typically compare the character of Lβ(X) with |X|. A certain covering for X we call a scant cover is used to find distinguished Cp(X) spaces. Two of the main results are: (i) Cp(X) is distinguished if and only if its bidual E coincides with RX , and (ii) for a Corson compact space X, the space Cp(X) is distinguished if and only if X is scattered and Eberlein compact

    Exact results for `bouncing' Gaussian wave packets

    Full text link
    We consider time-dependent Gaussian wave packet solutions of the Schrodinger equation (with arbitrary initial central position, x_0, and momentum, p_0, for an otherwise free-particle, but with an infinite wall at x=0, so-called bouncing wave packets. We show how difference or mirror solutions of the form psi(x,t)-psi(-x,t) can, in this case, be normalized exactly, allowing for the evaluation of a number of time-dependent expectation values and other quantities in closed form. For example, we calculate _t explicitly which illustrates how the free-particle kinetic (and hence total) energy is affected by the presence of the distant boundary. We also discuss the time dependence of the expectation values of position, _t, and momentum, _t, and their relation to the impulsive force during the `collision' with the wall. Finally, the x_0,p_0 --> 0 limit is shown to reduce to a special case of a non-standard free-particle Gaussian solution. The addition of this example to the literature then expands on the relatively small number of Gaussian solutions to quantum mechanical problems with familiar classical analogs (free particle, uniform acceleration, harmonic oscillator, unstable oscillator, and uniform magnetic field) available in closed form.Comment: 14 pages, 1 embedded .eps figur

    The Stark effect in linear potentials

    Full text link
    We examine the Stark effect (the second-order shift in the energy spectrum due to an external constant force) for two 1-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z>0 and V(z) infinite for z<0) and the symmetric linear potential (given by V(z) = F|z|). We show how straightforward use of the most obvious properties of the Airy function solutions and simple Taylor expansions give closed form results for the Stark shifts in both systems. These exact results are then compared to other approximation techniques, such as perturbation theory and WKB methods. These expressions add to the small number of closed-form descriptions available for the Stark effect in model quantum mechanical systems.Comment: 15 pages. To appear in Eur. J. Phys. Needs Institute of Physics (iopart) style file

    Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering

    Full text link
    An eikonal expansion is used to provide systematic corrections to the eikonal approximation through order 1/k21/k^2, where kk is the wave number. Electron wave functions are obtained for the Dirac equation with a Coulomb potential. They are used to investigate distorted-wave matrix elements for quasi-elastic electron scattering from a nucleus. A form of effective-momentum approximation is obtained using trajectory-dependent eikonal phases and focusing factors. Fixing the Coulomb distortion effects at the center of the nucleus, the often-used ema approximation is recovered. Comparisons of these approximations are made with full calculations using the electron eikonal wave functions. The ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure

    Strange Decays of Nonstrange Baryons

    Get PDF
    The strong decays of excited nonstrange baryons into the final states Lambda K, Sigma K, and for the first time into Lambda(1405) K, Lambda(1520) K, Sigma(1385) K, Lambda K*, and Sigma K*, are examined in a relativized quark pair creation model. The wave functions and parameters of the model are fixed by previous calculations of N pi and N pi pi, etc., decays. Our results show that it should be possible to discover several new negative parity excited baryons and confirm the discovery of several others by analyzing these final states in kaon production experiments. We also establish clear predictions for the relative strengths of certain states to decay to Lambda(1405) K and Lambda(1520) K, which can be tested to determine if a three-quark model of the Lambda(1405) K is valid. Our results compare favorably with the results of partial wave analyses of the limited existing data for the Lambda K and Sigma K channels. We do not find large Sigma K decay amplitudes for a substantial group of predicted and weakly established negative-parity states, in contrast to the only previous work to consider decays of these states into the strange final states Lambda K and Sigma K.Comment: 25 pages, 8 figures, RevTe

    Weak localization of light by cold atoms: the impact of quantum internal structure

    Get PDF
    Since the work of Anderson on localization, interference effects for the propagation of a wave in the presence of disorder have been extensively studied, as exemplified in coherent backscattering (CBS) of light. In the multiple scattering of light by a disordered sample of thermal atoms, interference effects are usually washed out by the fast atomic motion. This is no longer true for cold atoms where CBS has recently been observed. However, the internal structure of the atoms strongly influences the interference properties. In this paper, we consider light scattering by an atomic dipole transition with arbitrary degeneracy and study its impact on coherent backscattering. We show that the interference contrast is strongly reduced. Assuming a uniform statistical distribution over internal degrees of freedom, we compute analytically the single and double scattering contributions to the intensity in the weak localization regime. The so-called ladder and crossed diagrams are generalized to the case of atoms and permit to calculate enhancement factors and backscattering intensity profiles for polarized light and any closed atomic dipole transition.Comment: 22 pages Revtex, 9 figures, to appear in PR

    Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    Full text link
    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett. Vol. 17, Dec. 200

    Investigating the social value of the Ripon rivers flood alleviation scheme

    Get PDF
    This paper argues for an approach to flood alleviation design that considers the need not only for technical knowledge, but also a social perspective. It is predicted that more intense rainfall and rising sea levels will result in a greater number of people vulnerable to flood events. Flood alleviation design in the UK is often focused upon technical and cost-effective solutions, and consideration of social impact is seen as secondary. This paper examines how the social value of a UK flood alleviation scheme is perceived and discussed, by the local community and by those responsible for the design of the scheme, and exposes differences in perceptions both between and within these two groups. It recommends a future approach in which an understanding of the social value of a flood alleviation scheme is first co-produced with the community affected, enabling the design of a socially acceptable and successful project.The research presented in this paper is part of a larger study. The research is conducted with the aid of funding from an Engineering and Physical Sciences Research Council (EPSRC) iCASE doctoral award. Ove Arup and Partners also provide sponsorship as part of the award.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/jfr3.1217

    Combined QCD and electroweak analysis of HERA data

    Full text link
    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections from proofing process and small change to Fig. 12 and Table
    • …
    corecore