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Abstract
We continue our initial study of Cp(X) spaces that are distinguished, equiv., are large sub-
spaces ofRX , equiv., whose strong duals Lβ(X) carry the strongest locally convex topology.
Many are distinguished, many are not. All Lβ(X) spaces are, as are all metrizable Cp(X)

and Ck(X) spaces. To prove a space Cp(X) is not distinguished, we typically compare the
character of Lβ(X) with |X |. A certain covering for X we call a scant cover is used to find
distinguished Cp(X) spaces. Two of the main results are: (i) Cp(X) is distinguished if and
only if its bidual E coincides with R

X , and (ii) for a Corson compact space X , the space
Cp(X) is distinguished if and only if X is scattered and Eberlein compact.
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1 Introduction

Recall that a locally convex space E (embedded in its bidual E ′′ by means of the evaluation
map) is semi-reflexive if E ′′ coincides algebraically with E , reflexive if it is semi-reflexive
and the original locally convex topology of E coincides with β(E ′′, E ′), and distinguished if
its strong dual E ′

β is barrelled. Clearly, each reflexive space is semi-reflexive, and each semi-
reflexive space is distinguished [26, 23.3 (4)]. In fact, (alternate definition [26, 23.7]), E is
distinguished if and only if E is a large subspace of (E ′′, σ (E ′′, E ′)). Recall that a subspace
F of a locally convex space G is a large subspace ofG if every bounded set in G is contained
in the closure in G of a bounded set in F , [32, Definition 8.3.22]. If X is a Tychonoff space
and Cp(X) denotes the linear space C(X) of all real-valued continuous functions defined on
X equipped with the pointwise topology, it can be easily seen that Cp(X) is semi-reflexive if
and only ifCp(X) is reflexive, if and only if X is discrete. The first statement follows directly
from [26, 23.5 (1)] and [25, 11.3 Corollary]. The second is consequence of [13, Corollary
3.4]. Thus we readily resolve the (semi-)reflexive problem forCp(X). The simplest examples
of distinguished Cp(X) spaces which are not semi-reflexive are those with X any countable
nondiscrete Tychonoff space (see [13] and below). The more general distinguished problem
remains (see “Addendum”):

Problem 1 Characterize those Tychonoff spaces X such that Cp(X) is distinguished.

We confront this abstract problem by finding a number of concrete spaces Cp(X) which
are (or are not) distinguished. We simplify by noting that Cp(X) is distinguished if and only
if it is a large subspace of RX .

2 Preliminaries

Distinguished locally convex spaces were introduced by J. Dieudonné and L. Schwartz. This
class of locally convex spaces has attracted the attention of several specialists. For example,
A. Grothendieck showed that a metrizable locally convex space E is distinguished if and only
if E ′

β is bornological, and Heinrich [23] observed that each metrizable quasinormable locally
convex space [32, Definition 8.3.34] satisfies the density condition [7] which, as we shall see
below, implies that every metrizable quasinormable locally convex space is distinguished.
In particular, the strong dual of a distinguished Fréchet space can be described as a regular
(LB)-space [32, Observation 8.5.14 (e)]. The reader may consult references [24, 3.16], [25,
13.4], [26, 23.7, 29.3] and [32, 8.3] for further information about distinguished spaces.

As a general fact, a Fréchet space E is distinguished if and only if its strong dual Eβ has
countable tightness [18, Corolary 4] . The most celebrated example of a nondistinguished
Fréchet space is Köthe’s echelon space λ [T], [26, 31.7]. In [18, Example 4] it is shown
that the tightness of the strong dual λ×

β of λ [T] is exactly d, the dominating cardinal. Other
examples of non-distinguished Fréchet spaces can be found in [40].

Unless otherwise stated, X will stand for an infinite Tychonoff space. As usual, we shall
denote by υX theHewitt realcompactification of X . We shall assume that all linear spaces are
over the field R of real numbers and all locally convex spaces are Hausdorff. As mentioned
above, Cp(X) stands for the ring C(X) of real-valued continuous functions on X endowed
with the pointwise topology τp . The topological dual of Cp(X) will be denoted by L(X), or
by L p(X) when equipped with the weak* topology. We shall designate by Ck(X) the space
C(X) equipped with the compact-open topology τk .
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Let us recall that a space X is called Eberlein compact if it is homeomorphic to a weakly
compact subset of a Banach space, and Corson compact if it is homeomorphic to a compact
subset of a �-product of real lines. Every Eberlein compact space is Corson compact. A
topological space X is called scattered if every closed non-empty subspace Y of X has an
isolated point in the relative topology.

A locally convex space E is called quasinormable [32, Definition 8.3.34] if for every
absolutely convex neighborhood of zero U in E there exists an absolutely convex neigh-
borhood of zero V ⊆ U such that for every λ > 0 there exists a bounded set B in E with
V ⊆ B + λU . The class of quasinormable spaces contains, for example, the (DF)-spaces,
the Ck(X) spaces over a Tychonoff space X , the spaces Cn(	) for n ∈ N, 	 being an open
subset of RN, as well as all Fréchet-Montel spaces (see [25,31]).

A metrizable locally convex space E with a decreasing base {Un : n ∈ N} of absolutely
convex neighborhoods of zero satisfies the density condition if there is a double sequence{
Bn,k : n, k ∈ N

}
of bounded sets in E such that for each n ∈ N and each bounded setC ⊆ E

there is k ∈ N with C ⊆ Bn,k +Un , [8, Theorem 9]. The following general results hold true.

Theorem 2 [8] For a metrizable locally convex space E the following are equivalent.

(1) E satisfies the density condition.
(2) Every bounded set in E ′

β is metrizable.
(3) The space 
1(E) is distinguished.

Nevertheless, we have the following.

Theorem 3 [14] A metrizable locally convex space E is distinguished if and only if every
bounded set in the strong dual of E has countable tightness.

Consequently, if E is a metrizable locally convex space that satisfies the density condition,
Theorem 2 ensures that every bounded set in the strong dual of E is metrizable, which allows
Theorem 3 to guarantee that E is distinguished, but the converse fails, [9]. We also refer the
reader to [8], where some results about distinguished Köthe echelon and co-echelon spaces
are presented. Another characterization of the density condition for Fréchet spaces is given
in [12, Theorem 4].

Since, asmentioned earlier, eachmetrizableCk(X) space is quasinormable (see [25, 10.8.2
Theorem]), it turns out that

Proposition 4 Every metrizable Ck(X) space is distinguished.

The converse fails, since if X is discrete Ck(X) = R
X is distinguished but not metrizable

when |X | > ℵ0. The case with spaces Cp(X) is totally different from spaces Ck(X) and
others mentioned above. Let us review/refine our early theory with different proofs in a
broader context. First let us mention the following fundamental facts about metrizability of
bounded sets proved in [13, Corollary 2.2 and Theorem 2.5]. Every bounded set in Cp(X)

or Ck(X) is metrizable if and only if Cp(X) or Ck(X) is metrizable, respectively.
For exploring the dual of spaces Cp(X) we need some additional concepts. We recall a

Hausdorff locally convex space E is feral if every bounded subset is finite-dimensional, flat if
E ′ = E∗, and fit if it has a dense (linear) subspace whose codimension equals the dimension
of E (see [36,38]). Each flat space is feral, but not conversely. Indeed, every Lβ (X) space is
feral ([15, page 392] or [13, Theorem 3.1]). But often Lβ(X) is fit, not flat; e. g., when X is
cosmic with |X | = c (Corollary 31, below). Only the 0-dimensional linear space is both fit
and flat. Non-trivial fit spaces are the extreme opposite of flat spaces. The former have dense
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subspaces of every possible (including infinite) codimension, the latter have no proper dense
subspaces at all.

If A is a Hamel basis for E , let B be all points in A whose corresponding coefficient
functionals are discontinuous, set C := A\B, and let EB and EC be the linear span of B and
C , respectively. Clearly, E splits algebraically into the direct sum of EB and EC . We say A
is a continuous basis if B = ∅. The splitting theorem [35] says that if E is barrelled, then E
is topologically the direct sum of EB and EC and, moreover, the component EB is fit, while
EC bears the strongest locally convex topology (see [38]). Equivalently EC is barrelled and
flat. This augments standard exercises, proving

Theorem 5 These five assertions about a locally convex space E are equivalent.

(1) E has its strongest locally convex topology.
(2) E is the strong dual of the product of dim E-many lines.
(3) Every absolutely convex absorbing set is a zero-neighborhood in E.
(4) E is barrelled and flat.
(5) E is barrelled and admits a continuous basis [35].

The character χ(E) of a locally convex space E is the smallest cardinality for a base of
zero-neighborhoods in E .

Theorem 6 [36, Theorem 1] A locally convex space E is fit if χ(E) ≤ dim E.

Strong duals of metrizable spaces are prototypical (DF)-spaces. We contribute

Theorem 7 The strong dual of a metrizable locally convex space E is either fit or flat.

Proof I. Suppose no infinite-dimensional subspace of E admits a continuous norm, i. e., E
has its weak topology σ

(
E, E ′). Then E is (isomorphically) a dense subspace of the product

G of dim E ′-many lines, and metrizability implies dim E ′ ≤ ℵ0. Thus G is separable and
metrizable, so E is a large subspace of G [32, 8.3.23 (b)] and has the same strong dual as G.
Hence the strong dual E ′

β of E has its strongest locally convex topology and therefore is flat
(and barrelled).

II. Suppose some infinite-dimensional subspace of E admits a continuous norm. Then
dim E ′ ≥ c by the theorems of Mazur and Hahn–Banach. Metrizability and [37, Theorem
1] yield a fundamental family B of bounded sets in E with |B| ≤ d, with d the dominating
cardinal. Therefore χ(E ′

β) ≤ d ≤ c ≤ dim E ′
β , so that E ′

β is fit by Theorem 6. 
�
Part I is also a simpler proof of the basic

Theorem 8 [13, Theorem 3.3 (a)] If X is countable Tychonoff, Cp(X) is distinguished.

For a third proof note that Lβ(X), being countable-dimensional, is countably tight, then
apply [18, Corollay 3] and [13, Corollary 3.2]. Part I, again, shows that when X is count-
able, Lβ(X) has its strongest locally convex topology and thus admits a continuous basis.
Surprisingly, all Lβ(X) spaces admit continuous bases.

Theorem 9 The homeomorphic copy of X in L p(X) is a continuous basis for Lβ(X).

Proof The set A of functions g in C(X) such that |g(X)| ≤ 1 for all x ∈ X is pointwise
bounded, so the polar A0 is a zero-neighborhood in Lβ(X). Tychonoff extension theory
ensures A0 is just the absolutely convex hull of X . To see this, let y := ∑

x∈� ax · x be a
finite linear combination from X , choose g ∈ A with g(X) = sgnax for each x ∈ �, and
note that |〈g, y〉| = ∑

x∈� |ax | ≤ 1 if and only if y ∈ A0. Thus the coefficient functionals

for the basis X are each numerically bounded by 1 on A0 , so are continuous on Lβ (X). 
�
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We arrive at the foundational.

Theorem 10 For a Tychonoff space X these three assertions are equivalent.

(1) Cp(X) is distinguished.
(2) Cp(X) is a large subspace of RX .
(3) Lβ(X) has its strongest locally convex topology, [13].

Proof Theorems 5 and 9 prove (1) ⇔ (3), which is just [13, Corollary 3.4]. Since Cp (X) is
a dense subspace of the product RX , we may algebraically identify L(X) as their common
dual by means of restriction. Then Lβ(X) is their common strong dual if and only if Cp(X)

is large in R
X , by the bipolar theorem. Theorem 5 ensures (2) ⇔ (3). 
�

Theorem 11 [17] If Cp(X) is distinguished, then χ(Lβ(X)) > |X |.
Proof Otherwise Theorem 6 implies Lβ(X) is fit, not flat, contradicting Theorem 10. 
�

For the next theorem, if Q ⊆ L(X) has infinite support S = ⋃{suppμ : μ ∈ Q}, there
are a discrete sequence {xn}∞n=1 in X contained in S, a sequence {μn}∞n=1 in Q and a bounded
sequence { fn}∞n=1 in Cp(X) with xn ∈ suppμn and 〈μn, fn〉 = n for all n ∈ N, [25, 11.7.2
Theorem]. The proof of the first statement of the next result is similar to that of [25, 10.8.2
Theorem]. The second statement can be found in [25, 11.7.3 Corollary].

Theorem 12 The space Cp(X) is always quasinormable and quasibarrelled.

Proof Let us sketch the proofs of the two affirmations. If � ⊆ X is finite and ε > 0, let
U = { f ∈ C(X) : supx∈� | f (X)| < ε}. With B := { f ∈ C(X) : supx∈X | f (X)| ≤ 2ε}, a
similar argument to the proof of [25, 10.8.2 Theorem] shows thatU ⊆ B+λU for 0 < λ ≤ 1,
so for all λ > 0 since U is absolutely convex. For the second statement, if Q is a strongly
bounded set in L(X), the above observation implies that

⋃{suppμ : μ ∈ Q} is finite. So Q
lives in a finite-dimensional subspace of L(X). This means that the polar Q0 of Q in C(X)

is a neighborhood of zero in Cp(X). 
�
Since every metrizable quasinormable locally convex space is distinguished, we see once

more that for countable X the space Cp(X) is distinguished.

3 General facts on distinguished Cp(X) spaces

To be distinguished, Cp(X) must be a large subspace of RX (Theorem 10), so that its bidual
E coincides with R

X . Surprisingly, the necessary coincidence is also sufficient. For each
g ∈ R

X define Pg := { f ∈ R
X : | f | ≤ |g|}, a bounded set inRX . For each bounded set A in

R
X define φA ∈ R

X by writing φA(x) := sup f ∈A | f (X)| for each x ∈ X . For each bounded
set B in Cp(X), define another bounded set B+ in Cp(X) consisting of those h in C(X) for
which there exists a finite set F ⊆ B such that |h(x)| ≤ max f ∈F | f (X)| for all x ∈ X .

Lemma 13 If a subset A of RX lies in the closure B in R
X of a bounded set B in Cp(X),

then PφA ⊆ B+. In particular, PφB ⊆ B+ always holds.

Proof Given f0 ∈ PφA , a finite set � in X , and ε > 0, choose by definition of φA a finite set
G in A with |G| = |�| such that, for every x ∈ �,

φA(X) < max
g∈G |g(X)| + ε.
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Since G ⊆ B there exists F ⊆ B with |F | = |G| such that, for every x ∈ �,

| f0(X)| ≤ φA(X) < max
f ∈F | f (X)| + ε.

For each x ∈ � choose ax with |ax | ≤ max f ∈F | f (X)| and | f0(X) − ax | < ε. As X
is Tychonoff, there exists h ∈ C(X) such that h(X) = ax for all x ∈ � and |h(X)| ≤
max f ∈F | f (X)| for all x ∈ X . Therefore, h is in B+ and within ε of f0 on �, so f0 ∈ B+. 
�
Theorem 14 The space Cp(X) is distinguished if and only if the strong dual Lβ(X) is flat;
equivalently, the strong bidual E is the product space RX .

Proof of sufficiency The strong bidual E is a subspace of RX which, according to Theorem
9, always contains the space E0 of functions on X having finite support. Let A be a bounded
set inRX . By hypothesis, φA ∈ E ; i. e., φA ∈ B, the closure inRX of some bounded set B in
Cp(X). If S := {φA}, then φS = φA, and Lemma 13 ensures A ⊆ PφA = PφS ⊆ B+, which
proves Cp(X) is large in R

X . 
�
Corollary 15 The space Cp(X) is distinguished if and only if its strong bidual E is quasi-
complete.

Proof As RX is the quasi-completion of E0, Theorem 14 applies. 
�
Given Y ⊆ X , a continuous (linear) map ϕ : Cp(Y ) → Cp(X) is called a continuous

(linear) extender for Cp(Y ) if ϕ ( f ) |Y = f for every f ∈ C(X). We denote by PY the
canonical projection from R

X onto the subspace of functions whose support lies in Y .

Theorem 16 Let F be a finite family of sets covering X.

(1) If Cp(X) is distinguished and Y ⊆ X, then Cp(Y ) is also distinguished.
(2) The space Cp(X) is distinguished if and only if for each bounded set A inRX and Y ∈ F

there is a bounded set B in Cp(X) such that PY (A) ⊆ PY (B)
R
X

.
(3) Assume that Cp(Y ) is distinguished for each Y ∈ F . If for each bounded set D in

Cp(Y ) there is a bounded set B in Cp(X) with B|Y = D ( e.g., if each Cp(Y ) admits a
continuous linear extender), then Cp(X) is distinguished.

Proof If A is bounded in R
X and Y ⊆ X , then PY (A) is bounded in R

X . If Cp(X) is
distinguished, Theorem 10 impliesPY (A) ⊆ B for some bounded set B inCp(X). Applying
the idempotent PY , we get PY (A) ⊆ PY

(
B

) ⊆ PY (B). The inclusion PY (A) ⊆ PY (B)

just means the restriction sets A|Y and B|Y satisfy A|Y ⊆ B|Y , closure in R
Y , where B|Y is

bounded in Cp(Y ) and A|Y could be any bounded set in RY . This simultaneously proves (1)
via Theorem 10 and necessity of the condition in (2).

We prove sufficiency. Let A be bounded in R
X . For each Y ∈ F the condition posits a

bounded set BY in Cp(X) such that PY (A) ⊆ PY (BY ). Thus if x ∈ Y ∈ F , then

φA(X) = sup
f ∈A

| f (X)| ≤ sup
h∈BY

|h(X)| ≤ sup
h∈B

|h(X)| = φB (x) ,

where the finite union B := ⋃
Y∈F BY of bounded sets is bounded inCp(X). SinceF covers

X , the inequality φA(X) ≤ φB(X) holds for all x ∈ X . Appealing to Lemma 13, we have
A ⊆ PφA ⊆ PφB ⊆ B+. Thus Cp (X) is large in R

X ; the proof of (2) is complete.
Now (3) follows from (2). Indeed, if A is bounded in R

X , so is A|Y in R
Y . Largeness

produces a bounded set D in Cp(Y ) with A|Y ⊆ D
R
Y

. By hypothesis there is a bounded set

B in Cp(X) with B|Y = D. Therefore PY (A) ⊆ PY (B)
R
X

and (2) applies. 
�
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The converse of the first statement of the previous theorem fails, see Example 38.

Corollary 17 If E is a nontrivial topological vector space, the space Cp (E) is not distin-
guished. In particular, Cp

(
Cp(X)

)
and Cp

(
R

X
)
are never distinguished.

Proof Since E contains a copy of R and Cp(R) is not distinguished [17, Corollary 2.5],
Theorem 16 ensures that Cp(E) is not distinguished. 
�

Recall that a subset X of a Polish space is called an analytic set if X is a continuous image
of a Polish space, or equivalently, a continuous image of the Baire space NN.

Corollary 18 If X is an analytic set (in particular, aPolish space), thenCp(X) is distinguished
if and only if X is countable.

Proof Sufficiency is a consequence of Theorem 8. If X is uncountable, by the classical
Alexandroff–Hausdorff theorem X contains a homeomorphic copy of the Cantor set �. So,
Cp(X) is not distinguished by the first statement of Theorem 16. 
�
Proposition 19 Let {Xi : i ∈ I } be a family of Tychonoff spaces and let ⊕i∈I Xi denote their
topological sum. If each Cp(Xi ) is distinguished, then Cp(⊕i∈I Xi ) is distinguished.

Proof As the locally convex space Cp(⊕i∈I Xi ) is a (linearly homeomorphic) copy of the
product space

∏
i∈I Cp (Xi ), its strong dual is a copy of the direct sum ⊕i∈I Lβ(Xi ) of

barrelled spaces. 
�
Proposition 20 The spaceCp(X) is distinguished if and only if the subspaceCb

p(X) ofCp(X)

consisting of all bounded functions is distinguished.

Proof Since each pointwise bounded set A in C(X) is contained in the closure in Cp(X) of
a pointwise bounded subset of Cb(X), one has that Cb

p(X) is a large subspace of Cp(X). So,
both strong duals are isomorphic. 
�

4 The borne number

In the search for nondistinguished spaces Cp(X) the character χ
(
Lβ(X)

)
of the strong dual

Lβ(X) of Cp (X) proves to be particularly useful. For emphasis and convenience, in place of
χ

(
Lβ(X)

)
we often simply write bn(X), calling it the borne number of X . Thus the borne

number bn (X) of a Tychonoff space X is the least cardinality of a fundamental family of
bounded sets ofCp(X). For each non-normable metrizable locally convex space E , we know
the dominating cardinal d is the smallest size for a fundamental family of bounded sets in E
[37, Proposition 1] (see also [19, Theorem 2.3.2]). Therefore, when |X | = ℵ0 we have

χ
(
Lβ(X)

) = bn (X) = d.

It is well known that ℵ0 < d ≤ c and one may assume that d = ℵ1, or that d > ℵ1; either
choice is ZFC-consistent.

Theorem 21 If E denotes the bidual of Cp(X), then d ≤ bn(X) ≤ |E |.
Proof Since X is an infinite Tychonoff space, there is a sequence {Un : n ∈ N} of nonempty
pairwise disjoint open sets in X and a sequence { fn : n ∈ N} of functions in C(X) such that
each fn vanishes off Un but is not identically 0. If F denotes the linear span of the fn with
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the topology induced by Cp(X), it is clear that F is a non-normable metrizable space, a
copy of a dense subspace of RN. By intersecting F with members of a fundamental family
G of bounded sets in Cp(X), one obtains a fundamental family H in F with |G| ≥ |H|.
But |H| ≥ d by [37, Proposition 1], as noted above. Thus |G| ≥ d, and since G is arbitrary,
bn(X) ≥ d. If B is bounded in Cp(X), Lemma 13 implies φB ∈ B+. Hence φB ∈ E .
Moreover, B ⊆ PφB ∩C(X). Thus the intersections form a fundamental familyF of bounded
sets indexed by all the φB , a subset of E , so that |F | ≤ |E |. 
�

Recall that a fundamental bounded resolution for a locally convex space E is a fundamental
family F = {Aα : α ∈ N

N} of bounded sets in E with Aα ⊆ Aβ if α ≤ β. Since
the dominating cardinal d is also strongly dominating [37, p.138], there is a fundamental
subfamily F0 with |F0| ≤ d. This, combined with Theorem 21, yields

Proposition 22 If Cp(X) has a fundamental bounded resolution, then bn(X) = d.

In [11, Theorem 3.3] it is shown that Cp(X) has a fundamental bounded resolution if and
only if X is countable, which provides an independent proof.

Observe the relation bn(X) ≤ 2|C(X)| always holds, since 2|C(X)| is the number of subsets
of C(X). So, if X is separable we have in particular bn(X) ≤ 2c.

A subspace Y of a topological space X is called a retract of X if there is a retraction ϕ

from X onto Y , i. e., a surjective continuous map ϕ such that ϕ(y) = y for all y ∈ Y .

Proposition 23 If X is a Tychonoff space and Y is a retract of X then bn(Y ) ≤ bn(X).

Proof Let F be a fundamental family of bounded sets in Cp(X). Denote by S : Cp(X) →
Cp(Y ) the restriction map S f = f |Y and by T : Cp(Y ) → Cp(X) the embedding map
Tg = g ◦ ϕ. Observe that B = {S (Q) : Q ∈ F} is a fundamental family of bounded sets in
Cp(Y ). In fact, if P is a bounded set in Cp(Y ) then T (P) is a bounded set in Cp(X). Hence,
there is Q ∈ F such that T (P) ⊆ Q. Since ϕ|Y = idY , we get

S (Q) ⊇ S (T (P)) = S ({g ◦ ϕ : g ∈ P}) = P,

which shows that the familyB of bounded sets ofCp(Y ) swallows the bounded sets inCp (Y ).
So bn(Y ) ≤ |B| ≤ |F |, which implies that bn (Y ) ≤ bn(X). 
�

A subspace Y of a space X is said to be Gδ-dense in X if each nonempty Gδ-set in X
meets Y . The following result will be used in Theorem 41 and Example 62 below.

Proposition 24 Let Y be a Gδ-dense subspace of a Tychonoff space X. A set A in Cp(X)

is bounded if and only if A is bounded at the points of Y . If Y is C-embedded in X, then
bn(X) = bn(Y ).

Proof If A is a bounded set inCp(X), clearly A is pointwise bounded on Y . If A is unbounded
at some point x in X , choose a sequence { fn}∞n=1 in A with each | fn(X)| > n. The Gδ-set
G := ⋂∞

n=1 f −1
n ({r ∈ R : |r | > n}) contains x , thus is nonempty and meets Y at some point

y. But fn(y) > n by definition of G, so A is unbounded at the point y ∈ Y . This proves (the
contrapositive of) the first part. For the last part note that the (unique) extensions of bounded
sets in Cp(Y ) are bounded in Cp (X). 
�
Corollary 25 If Y is dense and C-embedded in a P-space X, then bn (X) = bn(Y ).

Proof In a P-space each nonempty Gδ-set is open, so dense subspaces are Gδ-dense. 
�
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We shall require the following well-known fact, of which we include a proof.

Lemma 26 Let X be a dense subset of a Tychonoff space T . If X is C-embedded, then X is
Gδ-dense in T .

Proof If not, there exist Un open in T and t ∈ G := ⋂∞
n=1Un with G ∩ X = ∅. We may

assumeUn+1 ⊆ Un . Choose fn ∈ C (T )with 0 ≤ fn ≤ 1 such that fn (t) = 1 and fn(y) = 0
if y ∈ T \Un . For each x ∈ X , the sequence { fn (x) : n ∈ N} is eventually 0 since x /∈ Un for
sufficiently large n. Setting h(X) := ∑∞

n=1 fn(X) for each x ∈ X , note that h ∈ C(X) . This
follows from the facts that (i) on the open set X\Un+1 in X , our function h agrees with the
continuous

∑n
i=1 fi , and (i i) the sets X\Un+1 cover X , since smaller sets X\Un cover. By

hypothesis, h admits an extension h ∈ C (T ). For each n ∈ N there is a neighborhood Vn of t
in T such that if s ∈ Vn and 1 ≤ k ≤ n+1, then fk (s) > n

n+1 . IfU is any neighborhood of t in

T , density provides xn ∈ Vn∩U∩X , so that h (xn) ≥ ∑n+1
k=1 fk (xn) >

(n+1)n
n+1 = n. Therefore

h is unbounded on the arbitrary neighborhood U , which means h cannot be continuous at t ,
a contradiction. 
�

Conversely, each Gδ-dense subspace X of a perfectly κ -normal space T (i. e., such that
the closure of each open subset of T is a Gδ-set in T ) is C-embedded in T , [41, Theorem
2]. Since υX is the largest topological subspace of the Stone-Čech compactification βX of
X in which X is C-embedded, Lemma 26 and Proposition 24 yield

Corollary 27 If X is a Tychonoff space, then bn (υX) = bn(X).

5 Nondistinguished Cp(X) spaces

We exhibit spaces Cp(X) which are not distinguished, often via the contrapositive of our
Theorem 11, conveniently stated here.

Theorem 28 [17, Theorem 2.1] If bn(X) ≤ |X |, then Cp(X) is not distinguished.

Lemma 29 If each closed bounded set in Cp(X) is separable, then bn(X) ≤ |C(X)|ℵ0 .

Proof The number of sequences in Cp(X) cannot exceed |Cp(X)|ℵ0 , where |Cp(X)| ≥ c.

Given that every closed bounded set in Cp(X) is separable, each closed bounded set in
Cp(X) is the closure of a sequence in Cp(X). So, the number of closed bounded sets does
not exceed the number of sequences. As the family F of closed bounded sets in Cp(X) is a
fundamental family of bounded sets, it follows that |F | ≤ |Cp(X)|ℵ0 . Therefore bn(X) ≤
|F | ≤ |C(X)|ℵ0 . 
�
Corollary 30 Let X be a separable Tychonoff space with |X | = c. If Cp(X) is hereditarily
separable, then Cp(X) is not distinguished.

Proof The separability of X yields |C(X)| = 2ℵ0 , so |C(X)|ℵ0 = (2ℵ0)ℵ0 = 2ℵ0 = |X |.
Since Cp(X) is hereditarily separable, Lemma 29 ensures that bn(X) ≤ |Cp(X)|ℵ0 = |X |.
Thus, Theorem 28 yields the conclusion. 
�

Recall that a family N of subsets of a Tychonoff space X is a network of X if for any
x ∈ X and any open set U in X with x ∈ U there is some P ∈ N such that x ∈ P ⊆ U .
The network weight nw(X) of X is the least cardinality of a network of X , and a space X
is called cosmic if nw(X) = ℵ0. In particular, each metrizable separable space is cosmic. In
what follows we denote by d(X) the density character of X .
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Corollary 31 [17, Corollary 2.4] If X is cosmic with |X | = c, then Cp(X) is not distinguished.

Proof If X has a countable network, Cp(X) has a countable network [29]. Since each space
with a countable network is hereditarily separable and inequality d(X) ≤ nw(X) always
holds true, X is separable. So, Corollary 30 yields the conclusion. 
�

Since Cp(X) is cosmic if and only if X is cosmic [29, Proposition 10.5], and each cosmic
space is hereditarily separable, Corollary 30 is more general than Corollary 31 . Apart from
cosmic spaces X , the Velichko-Zenor theorem ( [3, 2.5.10 Theorem] or [44,45]) tells us that
Cp(X) is hereditarily separable if Xn is hereditarily Lindelöf for each n ∈ N.

Example 32 Nondistinguished hereditarily separable Cp(X) spaces. Under CH there is a
strong S-space Y with |Y | = ω1, where ω1 denotes the first uncountable ordinal (see [42,
Problem 098]). So, Y n is hereditarily separable for each n ∈ N but Y is not hereditarily
Lindelöf, in fact even not Lindelöf. Then, by the Velichko–Zenor theorem, the space Cp(Y )n

is hereditarily Lindelöf for each n ∈ N. Let D be a countable dense subset of R
ω1 and

consider the space X := D ∪ Cp(Y ). Note that X is separable, since D ⊆ X ⊆ R
ω1 and

D is dense in R
ω1 , and Xn is clearly hereditarily Lindelöf for each n ∈ N. So, again by the

Velichko–Zenor theorem Cp(X) is hereditarily separable. Observe that X is not a cosmic
space, otherwise Cp(Y ) would be cosmic, as well as Cp(Y )n, so that Cp (Y )n would be
hereditarily separable for each n ∈ N. Hence Cp

(
Cp(Y )

)
would be hereditarily Lindelöf.

But then Y , which is homeomorphically embedded in Cp(Cp(Y )), would be a Lindelöf space,
which is not true. Note that |X | = c and, since X is separable, Corollary 30 asserts that
Cp(X) is not distinguished. In addition Cp(X) is not cosmic, since X is not cosmic either.

Since each compact cosmic space X is metrizable [2], the next theorem also extends
Corollary 31 for compact X , which corresponds to the case d(X) = ℵ0 and |X | = 2ℵ0 .
If X is a scattered compact then |X | = d(X) (see [39]), so we always have |X | < 2d(X).
Consequently, then next theorem makes sense for non scattered compact spaces.

Theorem 33 Let X be a compact space such that d(X) = d(Ck(X)). If |X | ≥ 2d(X), then
Cp(X) is not distinguished.

Proof Let F be a dense subspace of Ck(X) with |F | = d(Ck(X)). Then for each f ∈ C(X)

and 0 < ε < 1 there is g f ∈ F such that ‖ f − g f ‖ < ε, where ‖ · ‖ is the supremum norm
of the Banach space Ck(X). If A is a bounded set in Cp(X) we claim that QA := {g f ∈
F : f ∈ A} ⊆ F is a bounded set in Cp(X). Otherwise there is x ∈ X and a sequence
{g fn }∞n=1 ∈ QA with |g fn (X)| ≥ n + 1 for every n ∈ N . Consequently

| fn(X)| ≥ |g fn (x)| − ‖ fn − g fn‖ ≥ n + 1 − ε ≥ n

for each n ∈ N, which contradicts the fact that A is pointwise bounded. Moreover, by the
definition of QA one has A ⊆ QA

τk , where the closure is in Ck(X).
If Bound

(
Cp(X)

)
is the family of all bounded sets in Cp(X), we have seen that for each

A ∈ Bound
(
Cp(X)

)
there is QA ⊆ F such that A ⊆ QA

τp . Since QA
τp ∈ Bound

(
Cp (X)

)
,

this shows that there is a fundamental bounded family of closed bounded sets in Cp(X) of
cardinality at most 2|F | = 2d(X). Hence bn(X) ≤ 2d(X) ≤ |X |. Therefore Cp(X) is not
distinguished by virtue of Theorem 28. 
�

Recall that the Sorgenfrey line S is the space (R, τ ), where a base for the topology τ is
the family {[a, b) : a, b ∈ R, a < b}.
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Example 34 The space Cp (S) is not distinguished.

Proof Let {xn}∞n=1 be a dense sequence of distinct points in S. Define h ∈ R
S so that

limn→∞ h (xn) = ∞. If the closure A in R
S of a set A in Cp (S) contains h, choose n1 ∈ N

such that h
(
xn1

)
> 1 and set a1 = xn1 . Since h ∈ A, there exists f1 ∈ A with f1 (a1) > 1.

Continuity at a1 yields b1 > a1 such that f1 ([a1, b1]) ⊆ (1,+∞). Set I1 = [a1, b1]. Since
infinitelymany xn lie in theopen interval (a1, b1), there exists xn2 ∈ (a1, b1)withh

(
xn2

)
> 2.

For a2 := xn2 there exists f2 ∈ A such that f2 (a2) > 2. Continuity provides b2 > a2 such
that f1 ([a2, b2]) ⊆ (2,+∞), and we may assume b2 ≤ b1, so that I2 := [a2, b2] ⊆ I1.
Continuing inductively, we obtain a sequence of functions fn ∈ A and nested non-degenerate
closed intervals In of finite length such that fn(y) > n for all y ∈ In . Clearly, then, A is not
bounded in Cp (S) since it is unbounded at the point(s) in the nonempty intersection of the
intervals In . This proves that h is not in the bidual E of Cp (S). Thus E �= R

S and Cp (S) is
not distinguished. 
�
Corollary 35 If D denotes the double arrow space, then Cp (D) is not distinguished.

Proof As is well known D contains two homeomorphic copies of the Sorgenfrey line S, say
the subspaces S0 = (0, 1) × {0} and S1 = (0, 1) × {1}. If Cp(D) were distinguished, then
Cp(S1) would be distinguished by the first part of Theorem 16. Consequently Cp(S) would
be distinguished, which is not true. Hence, Cp (D) is not distinguished. 
�

Since the topology τ onR is stronger than the usual, the previous example also shows that
Cp (R), where here R is equipped with the usual topology, is not distinguished. Of course,
this is also consequence of Corollary 31.

Example 36 Cp (H)over theHelly space H is not distinguished. Helly’s space H is the closed
set of the compact space [0, 1][0,1] consisting of all non-decreasing functions equipped with
the relative product topology. It is separable and not metrizable. The constant functions com-
pose a homeomorphic copy of the interval [0, 1] (even Hilbert’s parallelotope P = [0, 1]ℵ0

is embedded in H, as noted in [33]). So, Corollary 31 together with Theorem 16 ensure that
Cp (H) is not distinguished. Similarly, since the long line L is locally homeomorphic to R,
neither is Cp (L) a distinguished space.

Regarding the next proposition, recall that for a topological space X the inequality |X | ≤
22

d(X)
holds in general [34], so for separable X one has |X | ≤ 22

ℵ0 .

Proposition 37 Let X be an infinite Tychonoff space. If |X | = 22
d(X)

, then Cp(X) is not
distinguished.

Proof Set κ := d(X). Clearly |C (X)| ≤ cκ = (
2ℵ0

)κ = 2κ , since ℵ0 ≤ κ . So, there are
at most 22

κ
bounded subsets in C(X). Hence bn (X) ≤ 22

κ = |X |, and again Theorem 28
yields the conclusion. 
�
Example 38 If X is an infinite discrete space, then Cp (βX) is not distinguished. Note that

d (βX) = |X | ≥ ℵ0. Since |βX | = 22
|X |
, we apply the previous proposition. The fact that

Cp (βN) is nondistinguished was noticed in [17, Corollary 2.2].

Corollary 39 If X is separable with |X | = 2c, then Cp(X) is not distinguished.

Proof If X is separable, d(X) = ℵ0. As |X | = 2c = 22
ℵ0 , Proposition 37 applies. 
�
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Example 40 Both Cp (βQ) and Cp (βR) are not distinguished. According to [20, 9.3], one
has |βQ| = |βR| = 2c. Since βQ and βR are separable, the previous corollary applies.

Proposition 41 Let X be an infinite Tychonoff space and let Y be a dense and C-embedded
subset of X. If |X | ≥ 2|Y |, then Cp(X) is not distinguished.

Proof If E denotes the bidual of Cp(X), Theorem 21, Proposition 24 and Lemma 26 yield
bn(X) = bn(Y ) ≤ |E | ≤ 2|Y | ≤ |X |. So, Theorem 28 does the job. 
�
Corollary 42 If |υX | ≥ 2|X |, then Cp (υX) is not distinguished.

Example 43 Haydon’s third exampleH is a pseudocompact space of cardinal cwhich contains
N so that υH = βH = βN [22]. Hence |υH| = 2c = 2|H| and Corollary 42 ensures that
Cp (υH) is not distinguished. Nonetheless, since υH = βN this is also a consequence of
[17, Corollary 2.2]. The same can be said of the first Marciszewski example [27].

6 Distinguished Cp(X) spaces

The Lindelöfication Lm of an uncountable discrete space D (m) is a nondiscrete P-space
such that Cp (Lm) is distinguished (see [13, Example 3.8] for m = ℵ1). Let us show that
there are also distinguished Cp (X) spaces over uncountable compact X . First we introduce
some useful machinery.

Definition 44 We say that a family {Nx : x ∈ X} of subsets of a Tychonoff space X is a
scant cover for X if each Nx is a neighborhood of x and for each u ∈ X the set Xu :=
{x ∈ X : u ∈ Nx } is finite.
Example 45 Each countable Tychonoff space X = {xn : n ∈ N} admits a scant cover. Simply
set Nxn = {xi : i ≥ n} for each n ∈ N .

Theorem 46 If X admits a scant cover {Nx : x ∈ X} then Cp(X) is distinguished.

Proof Let A be bounded inRX . For each y ∈ X choose 0 ≤ fy ∈ C(X) such that fy vanishes
offNy ; fy(y) = φA (y); and fy(x) ≤ φA(y) for all x ∈ X . Since a given x is inNy for only
finitely many y ∈ X , the supremum supy∈X

∣∣ fy(x)
∣∣ cannot exceed the maximum of finitely

many numbers of the form φA(y). Hence B := {
fy : y ∈ X

}
is a bounded set in Cp (X) .

Lemma 13 implies PφB ⊆ B+. But φA ≤ φB , so A ⊆ PφA ⊆ PφB ⊆ B+. Therefore Cp(X)

is large in R
X . 
�

Corollary 47 If X has only finitely many non-isolated points, then Cp(X) is distinguished.

Proof If X = � ∪ {u1, . . . , un}, where all points x ∈ � are isolated in X , the family
{Nx : x ∈ X} consisting of Nx = {x} if x ∈ � and Nui = X if 1 ≤ i ≤ n is a scant cover
for X . Theorem 46 applies. 
�
Corollary 48 If X is a discrete space and α(X) stands for the one-point compactification or
the one-point Lindelöfication of X, then Cp (α (X)) is distinguished.

A family F of subsets of X is called point-finite [1] if each x ∈ X belongs at most to
finitely many members of F . It is called σ -point-finite if F = ⋃∞

n=1 Fn , where each Fn is
point-finite. Note that every scant cover of X is point-finite, but not every point-finite (even
clopen) cover is scant (e. g., take X any infinite space and set each Nx = X ).
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Theorem 49 Let X be a Corson compact space. The following are equivalent.

(1) X is scattered.
(2) X is a scattered Eberlein compact space.
(3) Cp(X) is distinguished.

Proof 1 ⇒ 2. If X is a Corson scattered compact, then X is necessarily a scattered Eberlein
compact space by Alster’s theorem [1, Theorem].

2 ⇒ 3. If we regard the proof of [6, Lemma 1.1] with X an arbitrary scattered Eberlein
compactum, for each a ∈ X there is defined a clopen neighborhood Va of a such that the
family {Va : a ∈ X} is point-finite, with Va and Vb (clearly) distinct for distinct a, b ∈ X .
This shows that {Va : a ∈ X} is a scant cover for X , so Theorem 46 shows that Cp(X) is
distinguished.

3 ⇒ 1. Assume that Cp(X) is distinguished but X is a non-scattered Corson compact
space. According to the classical theorem of Pełczyński and Semadeni, there is a continuous
surjection f from X onto the closed interval [0, 1]. We claim that there exists a compact set
Y in X which is metrizable and |Y | = c. Indeed, fix any countable dense subset Q of [0, 1]
and choose a countable subset P in X such that f (P) = Q. Let Y be the closure of P in X .
Clearly Y is metrizable, since it is a Corson separable compact space. In addition, Y must
have the cardinality of continuum since by the density of P in Y and the density of Q in
[0, 1] one has f (Y ) = [0, 1]. Since Cp(Y ) is not distinguished by Corollary 31, neither is
Cp(X) distinguished, by the first statement of Theorem 16. 
�
Remark 50 Since d(X) = d(Cp(X)) for any Corson compact space with d(X) ≥ ℵ0 ,
whereas in general d(Ck(X)) = d(Cp(X)) [28], then d(X) = d(Ck(X)) holds for Corson
compact spaces. So, Theorem 33works for a nonscattered Corson compact X . The previous
result improves this fact.

Let us recall that a family U of subsets of X is called separating if given any two distinct
points x, y ∈ X , there is a member U ∈ U such that either x ∈ U and y /∈ U , or y ∈ U and
x /∈ U . A known Rosenthal theorem says that a compact space X is an Eberlein compact if
and only if X has a σ -point-finite separating family of open Fσ -subsets. The next theorem
provides a concrete class of compact spaces for which Theorem 46 applies.

Theorem 51 A compact space X admits a scant cover if and only if X is a scattered Eberlein
compact.

Proof If X is a scattered Eberlein compact, then X admits a scant cover by the argument of
Theorem 49 (see 2 ⇒ 3). Assume now that X admits a scant cover ν = {Nx : x ∈ X}. Let
us refine ν . Fix any u ∈ X . By definition, there are only finitely many points xi �= u in X
such that u ∈ Nxi . Since X is a Tychonoff space we can choose an open Fσ -set Mu such
that u ∈ Mu ⊆ Nu and, yet, Mu is disjoint from all points xi . Evidently, the new family
μ = {Mx : x ∈ X} is a scant cover for X because μ is a shrinking of ν. Let us show that μ
separates points of X . Take distinct points x, y ∈ X . If y ∈ Mx , by our construction we have
x /∈ My . Hence μ is a point-finite separating family of open Fσ -subsets of X . Therefore, X
is an Eberlein compact by Rosenthal’s characterization. Further, Cp(X) is distinguished by
Theorem 46. So, X is scattered by Theorem 49. 
�
Corollary 52 A non-compact locally compact space X admits a scant cover if and only if the
one-point compactification of X is a scattered Eberlein compact.
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Proof Denote the one-point compactification of X by α(X). Observe that X is open in α(X).
Let ν be a scant cover of X . It is easy to see that by adding to ν the set α(X)we obtain a scant
cover of α(X). So, the compact space α(X) is a scattered Eberlein compact by Theorem 51.
Conversely, it suffices to observe that ifμ is a scant cover of α(X) then ν = {U ∩ X : U ∈ μ}
is a scant cover of X . 
�
Remark 53 The one-point compactification of a non-compact locally compact space need not
have a scant cover. In fact, as follows fromCorollary 52,if X is any compact spacewhich is not
a scattered Eberlein compact and we remove one point, say y ∈ X, we obtain a non-compact
locally compact space Y = X\ {y} which does not admit a scant cover. In particular, the
interval (0, 1] or the locally compact space of all countable ordinals ω1 equipped with the
order topology does not admit a scant cover.

Let us recall that a space X is strongly σ -discrete if it is the union of countably many of
its closed discrete subspaces (see [43, 1.5]). A topological space X is strongly splittable if
each f ∈ R

X is the pointwise limit of a sequence { fn}∞n=1 in C(X). Countable Tychonoff
spaces and discrete spaces are strongly splittable, as well as every normal strongly σ -discrete
space. Since each Cp(X) over a P-space X is sequentially complete [16, Theorem 1.1], a
P-space is strongly splittable if and only if it is discrete.

Proposition 54 If X is a strongly splittable Tychonoff space, Cp(X) is distinguished.

Proof Cauchy sequences in Cp(X) are bounded, so the bidual of Cp(X) is R
X and the

conclusion follows from Theorem 14. 
�
Remark 55 The converse fails: the one-point compactification X of an uncountable discrete
space is not strongly splittable [43, U.417].

A similar result to Corollary 18 is valid for absolutely analytic metrizable topological
spaces. Recall that a metrizable space Y is called absolutely analytic if Y is homeomorphic
to a Souslin subspace of a complete metric space X (of an arbitrary weight), i. e., if Y is
expressible as

Y =
⋃

α∈NN

⋂

n∈N
Yα|n

where each Yσ |n is a closed subset of X . Every Borel subspace of a complete metric space is
an absolutely analytic space (see [21]).

Proposition 56 For an absolutely analytic metrizable space X, these are equivalent.

(1) X is strongly σ -discrete.
(2) Cp(X) is distinguished.

Proof By themain result of [10], every absolutely analyticmetrizable space X either contains
a homeomorphic copy of the Cantor set � or it is strongly σ -discrete. Since Cp (�) is not
distinguished, we have that 2 ⇒ 1. Implication 1 ⇒ 2 is an immediate consequence of
Proposition 54. 
�

Next we establish a permanence property for distinguished Cp(X) spaces when X is
enlarged with a finite set of points of βX\X .
Theorem 57 Let X = Y ∪ Z , where Y is finite and every f ∈ Cb (Z) has an extension
f̃ ∈ C(X). Then Cp(X) is distinguished if and only if Cp (Z) is distinguished.
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Proof First statement of Theorem 16 proves one part. For the other, we assume Cp (Z) is
distinguished and use the second statement of Theorem 16. Finite induction reduces the
proof to the case in which Y consists of a single point y0 /∈ Z . If A is bounded in R

X ,
its bounded one-dimensional projection PY (A) easily lies in PY (B) for some aptly chosen
one-dimensional set B. We still must find a suitable set B for the other projection PZ (A).
Since Cp (Z) is distinguished, so isCb

p (Z). Hence there is a bounded set B0 inCb
p (Z)whose

closure in RZ contains A|Z . The extension hypothesis then provides a set B1 in Cp(X) such

that B1|Z = B0. Thus we have (i) PZ (A) ⊆ PZ (B1)
R
X

. If B1 is bounded at y0, then B1

is bounded on all of X , and part (2) of Theorem 16 yields the conclusion with B = B1. If
B1 is unbounded at y0, we form a new set B in Cp(X) by replacing each function f in B1

with functions f1, f2, . . . such that each fn = f − anhn , where hn ∈ B1, |an | ≤ 1/n, and
f (y0) = anhn (y0). Now each fn (y0) = 0 and if z ∈ Z we have

| fn (z)| ≤ | f (z)| + |hn (z)| ≤ 2 sup
g∈B0

|g (z)| ,

so the new set B is bounded at all points of X . Also, for each f in B1 the fn converge

pointwise to PZ ( f ). Consequently, we have (i i) PZ (B1) ⊆ PZ (B)
R
X

. Together, (i) and

(i i) imply PZ (A) ⊆ PZ (B)
R
X

. 
�
Corollary 58 If X = Y ∪ Z , where Y is a finite subset of βZ\Z, then Cp(X) is distinguished
if and only if Cp (Z) is distinguished.

The next challenge could be the case where |Y | = ℵ0. We note that in Michael’s line
(below) we have |Y | = ℵ0 and Z is discrete, so that both Cp(Y ) and C (Z) are distinguished,
but Cp(X) is not distinguished.

If we equip Q with the relative topology of R and P with the discrete topology and set
X := Q (relative)⊕ P (discrete), it follows from Proposition 19 thatCp(X) is distinguished.
However, since Cp (P) is not distinguished when P has the relative topology of R, if we
retain on P the usual open sets of R and equip Q with the discrete topology, setting X :=
Q (discrete) ∪ P (relative), Theorem 16 assures that Cp(X) is not distinguished.

In what follows we are going to consider topological spaces of Michael’s type (see [30]).
We start with a Tychonoff space Z and a proper topological subspace Y of Z . We retain on
Y the original topology of Z and equip Z\Y with the discrete topology. Let us denote by X
the space Z endowed with this stronger topology. If x ∈ Z\Y = X\Y then {x} is an open
neighborhood of x in X , but if x ∈ Y a basic open neighborhood of x in X is just an open
neighborhood U of x in Z . Note that X is a Tychonoff space. Indeed, X is clearly T2 and
if x ∈ X and Q is a closed set in X with x /∈ Q, two cases are in order. If x ∈ Y there is
an open neighborhood U of x in Z with U ∩ Q = ∅. So there is f ∈ C (Z) ⊆ C (X) with
0 ≤ f ≤ 1 such that f (X) = 1 and f (y) = 0 for every y ∈ X\U , in particular f (y) = 0 for
y ∈ Q. If x ∈ X\Y we choose g ∈ R

X defined by g(X) = 1 and g (y) = 0 if y �= x . Clearly
g ∈ C(X), 0 ≤ g ≤ 1, and g(y) = 0 for each y ∈ Q. Let us start with a negative example,
namely with the original Michael line, where the rationals retain the original topology of R
and the irrationals are declared to be isolated.

Example 59 IfM denotes the Michael line, the space Cp (M) is not distinguished.

Proof Let {xn : n ∈ N} be an enumeration of the rationals. SinceM and R produce the same
neighborhood base at xn , one repeats verbatim the inductive proof of Example 34 to see that
the bidual of Cp (M) does not contain some h ∈ R

M. 
�
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Theorem 60 Let Y be a nonempty subspace of a Tychonoff space Z. Let X be Z with the
topology of Michael’s type obtained by retaining on Y the open sets of Z and declaring
isolated the points of Z\Y . Then Cp(X) is distinguished if and only if for each bounded set

A in R
X there is a bounded set B in Cp (X) with PY (A) ⊆ PY (B)

R
X

.

Proof Let A be bounded in R
X . For each f ∈ A and each finite set � in X\Y , let f� agree

with f on � and vanish on X\�. Clearly, f� ∈ C(X) and the collection B of all such f�

is bounded in Cp(X) since A is bounded. In addition PX\Y (A) ⊆ PX\Y (B)
R
X

. Now with
F := {Y , X\Y }, apply Part (2) of Theorem 16. 
�

Recall that a subspace Y ⊆ Z is l-embedded in Z if there exists a continuous linear
extender ϕ : Cp (Y ) → Cp (Z), [4]. In particular, each metrizable compact subspace Y is
l-embedded in Z [5].

Corollary 61 Let Z be a Tychonoff space and Y be a subspace of Z. Denote by X the space
Z with the topology of Michael’s type obtained by retaining on Y the original topology and
by declaring isolated the points of Z\Y . If either (i) Y is dense and C-embedded in Z or (ii)
Y is l-embedded in Z, then Cp(X) is distinguished if and only if Cp(Y ) is distinguished.

Proof Assume that Cp(Y ) is distinguished. In the first case, if A is bounded in R
X then,

since Y is C-embedded, there is a set B in Cp(X) such that B is bounded at the points of Y

with A|Y ⊆ B|YR
Y

, i. e., with PY (A) ⊆ PY (B)
R
X

. Proposition 24 and Lemma 26 imply B
is bounded in Cp(X), so Theorem 60 assures Cp(X) is distinguished. In the second case, if
A is a bounded set in R

X , there is a bounded set Q in Cp(Y ) whose closure in R
Y contains

A|Y . Now, if ϕ : Cp(Y ) → Cp (Z) is a continuous linear extender, B := ϕ (Q) is bounded

in Cp(X) and again PY (A) ⊆ PY (B)
R
X

. 
�

Corollary 62 Let Y be a Tychonoff space. On υY consider the stronger topology τ that
coincides with the original on Y but the points of υY\Y are declared to be isolated. If
X := (υY , τ ), then Cp (X) is distinguished if and only if Cp(Y ) is distinguished.

We conclude by posing two questions which we haven’t been able to solve.

Problem 63 Is the space Cp (ω1) distinguished?

Theorem 28 seemingly cannot provide a negative answer, since (i) bn
(
ω1

) ≥ d (Theorem
21), and (ii) one may assume d > |ω1|. On the other hand, scant covers cannot provide a
positive answer since, according to Remark 53, there is no scant cover for ω1.

Problem 64 Let X be a compact space. Is it true that if Cp(X) is distinguished, then X is
scattered?

Addendum. Problem 1 has recently been solved independently by Ferrando/Saxon and
Ka̧kol/Leiderman. Problems 63 and 64 have been solved by Ka̧kol/Leiderman. All these
solutions should appear soon.
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