50 research outputs found

    Islands Within Islands: Bacterial Phylogenetic Structure and Consortia in Hawaiian Lava Caves and Fumaroles

    Get PDF
    Lava caves, tubes, and fumaroles in Hawai‘i present a range of volcanic, oligotrophic environments from different lava flows and host unexpectedly high levels of bacterial diversity. These features provide an opportunity to study the ecological drivers that structure bacterial community diversity and assemblies in volcanic ecosystems and compare the older, more stable environments of lava tubes, to the more variable and extreme conditions of younger, geothermally active caves and fumaroles. Using 16S rRNA amplicon-based sequencing methods, we investigated the phylogenetic distinctness and diversity and identified microbial interactions and consortia through co-occurrence networks in 70 samples from lava tubes, geothermal lava caves, and fumaroles on the island of Hawai‘i. Our data illustrate that lava caves and geothermal sites harbor unique microbial communities, with very little overlap between caves or sites. We also found that older lava tubes (500–800 yrs old) hosted greater phylogenetic diversity (Faith's PD) than sites that were either geothermally active or younger (<400 yrs old). Geothermally active sites had a greater number of interactions and complexity than lava tubes. Average phylogenetic distinctness, a measure of the phylogenetic relatedness of a community, was higher than would be expected if communities were structured at random. This suggests that bacterial communities of Hawaiian volcanic environments are phylogenetically over-dispersed and that competitive exclusion is the main driver in structuring these communities. This was supported by network analyses that found that taxa (Class level) co-occurred with more distantly related organisms than close relatives, particularly in geothermal sites. Network “hubs” (taxa of potentially higher ecological importance) were not the most abundant taxa in either geothermal sites or lava tubes and were identified as unknown families or genera of the phyla, Chloroflexi and Acidobacteria. These results highlight the need for further study on the ecological role of microbes in caves through targeted culturing methods, metagenomics, and long-read sequence technologies

    Metabolic versatility of Caldarchaeales from geothermal features of Hawai’i and Chile as revealed by five metagenome-assembled genomes

    Get PDF
    Members of the archaeal order Caldarchaeales (previously the phylum Aigarchaeota) are poorly sampled and are represented in public databases by relatively few genomes. Additional representative genomes will help resolve their placement among all known members of Archaea and provide insights into their roles in the environment. In this study, we analyzed 16S rRNA gene amplicons belonging to the Caldarchaeales that are available in public databases, which demonstrated that archaea of the order Caldarchaeales are diverse, widespread, and most abundant in geothermal habitats. We also constructed five metagenome-assembled genomes (MAGs) of Caldarchaeales from two geothermal features to investigate their metabolic potential and phylogenomic position in the domain Archaea. Two of the MAGs were assembled from microbial community DNA extracted from fumarolic lava rocks from Mauna Ulu, Hawai‘i, and three were assembled from DNA obtained from hot spring sinters from the El Tatio geothermal field in Chile. MAGs from Hawai‘i are high quality bins with completeness >95% and contamination <1%, and one likely belongs to a novel species in a new genus recently discovered at a submarine volcano off New Zealand. MAGs from Chile have lower completeness levels ranging from 27 to 70%. Gene content of the MAGs revealed that these members of Caldarchaeales are likely metabolically versatile and exhibit the potential for both chemoorganotrophic and chemolithotrophic lifestyles. The wide array of metabolic capabilities exhibited by these members of Caldarchaeales might help them thrive under diverse harsh environmental conditions. All the MAGs except one from Chile harbor putative prophage regions encoding several auxiliary metabolic genes (AMGs) that may confer a fitness advantage on their Caldarchaeales hosts by increasing their metabolic potential and make them better adapted to new environmental conditions. Phylogenomic analysis of the five MAGs and over 3,000 representative archaeal genomes showed the order Caldarchaeales forms a monophyletic group that is sister to the clade comprising the orders Geothermarchaeales (previously Candidatus Geothermarchaeota), Conexivisphaerales and Nitrososphaerales (formerly known as Thaumarchaeota), supporting the status of Caldarchaeales members as a clade distinct from the Thaumarchaeota

    Assembling the Marine Metagenome, One Cell at a Time

    Get PDF
    The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa

    The archaeal legacy of eukaryotes : A phylogenomic perspective

    No full text
    The origin of the eukaryotic cell can be regarded as one of the hallmarks in the history of life on our planet. The apparent genomic chimerism in eukaryotic genomes is currently best explainedbyinvokingacellular fusionatthe rootofthe eukaryotes that involves one archaeal and one or more bacterial components. Here, we use a phylogenomics approach to re-evaluate the evolutionary affiliation between Archaea and eukaryotes, and provide further support for scenarios in which the nuclear lineage in eukaryotes emerged from within the archaeal radiation, displaying a strong phylogenetic affiliation with, or even within, the archaeal TACK superphylum. Further taxonomic sampling ofarchaeal genomes in this super-phylum will certainly providea better resolution in the events that have been instrumental for the emergence of the eukaryotic lineage.</p

    ‘Geoarchaeote NAG1’ is a deeply rooting lineage of the archaeal order Thermoproteales rather than a new phylum

    Full text link
    Zavrơni rad sastoji se od dvije cjeline: - Teorijskog dijela - Eksperimentalnog dijela Teorijski dio opisuje PACVD metodu prevlačenja, sastavne dijelove CVD sustava i njihovu svrhu, opis procesa prevlačenja, prednosti i nedostatke procesa, te prekursore koji se najčeơće upotrebljavaju za dobivanje prevlak. Svojstva prevlaka i uporaba PACVD-a su obrađeni u posebnim poglavljima. Eksperimentalni dio se sastoji od opisa predobrade uzoraka za PACVD postupak, te kvantitativna kemijska analiza prevlake GDOES-om i debljina prevlake mjerena calotesterom

    Close encounters of the third domain : The emerging genomic view of archaeal diversity and evolution

    Get PDF
    The Archaea represent the so-called Third Domain of life, which has evolved in parallel with the Bacteria and which is implicated to have played a pivotal role in the emergence of the eukaryotic domain of life. Recent progress in genomic sequencing technologies and cultivation-independent methods has started to unearth a plethora of data of novel, uncultivated archaeal lineages. Here, we review how the availability of such genomic data has revealed several important insights into the diversity, ecological relevance, metabolic capacity, and the origin and evolution of the archaeal domain of life.</p
    corecore