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TheArchaea represent the so-calledThird Domain of life, which has evolved in parallel with the Bacteria and which is implicated to
have played a pivotal role in the emergence of the eukaryotic domain of life. Recent progress in genomic sequencing technologies
and cultivation-independent methods has started to unearth a plethora of data of novel, uncultivated archaeal lineages. Here, we
review how the availability of such genomic data has revealed several important insights into the diversity, ecological relevance,
metabolic capacity, and the origin and evolution of the archaeal domain of life.

1. Introduction

The description of the three (cellular) domains of life—
Eukarya, Bacteria, and Archaea—by Carl Woese and George
Fox [1] represents a milestone in the modern era of micro-
biology. In particular, using phylogenetic reconstructions of
the small-subunit (16S or 18S) ribosomal RNA gene, Woese
discovered that microscopically indistinguishable prokary-
otes are not a homogeneous assemblage but are comprised of
two fundamentally different groups of organisms: Eubacteria
(later Bacteria) on one side and an additional life form
referred to as Archaebacteria (later Archaea) on the other
side [1]. Though not immediately accepted by the scientific
community, this finding was early on supported by Wolfram
Zillig through his studies on DNA-dependent RNA poly-
merases, as well as by Otto Kandler investigating “bacterial”
cell walls [2]. Indeed, a subset of prokaryotic organisms
subsequently assigned to Archaea was found to harbor DNA-
dependent RNA polymerases that bore more similarity to
those of eukaryotes, and to contain proteinaceous cell walls
that lack peptidoglycan as well as cell membranes composed
of L-glycerol ether lipids with isoprenoid chains instead of D-
glycerol ester lipids with fatty acid chains [3–6]. Since then,
further investigation of cellular characteristics of archaea has
revealed that this domain of life contains eukaryotic-like

information-processing machineries [7–14]. These findings
were later supported by genome sequences and compara-
tive analyses of genes coding for replication, transcription,
and translation machineries as well as by protein crystal
structures [15–21]. Additionally, some archaeal lineages were
shown to contain homologs of eukaryotic cell division and
cytoskeleton genes as well as histones and seem to express
a chromatin architecture similar to eukaryotes [22–28]. In
contrast to information-processing and cell division genes,
archaeal operational systems (energymetabolism, biosynthe-
sis pathways, and regulation) often appear to be more closely
related to bacteria [29].

Based on phylogenetic reconstructions of the evolu-
tionary history of 16S rRNA genes, the domain Archaea
was originally divided into two major phyla: the Eur-
yarchaeota and Crenarchaeota [30], which were sepa-
rated by a deep split and thought to comprise only
extremophilic (thermophilic, halophilic, and acidophilic) as
well as methanogenic organisms. However, novel culture-
independent and high-throughput sequencing techniques
have recently uncovered a huge diversity of so far unchar-
acterized microorganisms on Earth as well as the ubiquitous
occurrence of archaeal species [31–33]. Many of these novel
archaeal groups are responsible for important ecological
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processes and are only distantly related to established lin-
eages within Cren- and Euryarchaeota [31, 32, 34–39]. For
example, the acquisition of genome sequences from novel
archaeal representatives has led to the proposal of several
additional archaeal phyla (including Nanoarchaeota, Korar-
chaeota, Thaumarchaeota, Aigarchaeota, and Geoarchaeota)
[40–46] and the investigation of uncultivated archaea using
single cell genomics has already started to add new insights
into the phylogenetic diversity of the Third Domain of
life and necessitates the definition of additional lineages
of high taxonomic rank including novel potential phyla
and superphyla [33, 39] (see also below). Furthermore,
the investigation of the metabolic potential of these novel
organisms has provided fundamentally new insights into
major biogeochemical nutrient cycles. Indeed, archaea are
now recognized as key players in various biogeochemical
processes [47]. For example, the perception of the global
nitrogen cycle has been deeply altered by discovering that
the ability to gain energy solely from ammonia was not
limited to a few bacteria but also included the ammonia-
oxidizing Thaumarchaeota [48, 49]. Archaea also appear to
play a significant role in the carbon cycle, since, in addition
to all known methanogenic organisms on Earth, they also
encompass anaerobic methane oxidizing archaea (ANME
lineages 1–3) [50].

The study of archaeal genomes and diversity is also
of considerable importance for a better understanding of
eukaryotic evolution. Indeed, the discovery of eukaryotic
features in archaea [10] has initiated a new basis for address-
ing the origin of eukaryotes [51–54]. Interestingly, recent
phylogenetic analyses of universal proteins have suggested
that eukaryotes might have evolved from a bona fide archaeal
lineage that forms a sister-lineage of or a lineage emerging
from within the TACK-superphylum comprised of Thaum-,
Aig-, Cren-, and Korarchaeota [55–58].

Below we give a contemporary overview of how recent
developments in archaeal genomic research have contributed
to revealing new insights into the diversity, ecological rele-
vance, metabolic capacity, and the origin and evolution of the
archaeal domain of life.

2. The Methanogenic Nature of Archaea

The scientific community that addressed questions about
prokaryotic energy metabolism on the early Earth or in
hydrothermal vent systems [59] has proposed that methano-
genesis and/or acetogenesis most likely represent ancient
metabolic pathways [60–62]. Evidence for the biological
production of methane as early as 3.46Gyr ago supports
these scenarios [63]. However, phylogenetic evidence placing
methanogens at the base of the archaeal tree is limited
and disputed. Depending on the outgroup and phylogenetic
methods used, many recent analyses find either members
of the Nanohaloarchaea, Nanoarchaeota, ARMAN-lineages,
and/or Thermococcales as earliest (eury-)archaeal branches
[55, 64, 65]. The latter observation is consistent with
results from a base and amino acid composition analysis,
which indicated that last archaeal common ancestor (LACA)

was a hyperthermophilic organism [66]. The placement of
Methanopyrus kandleri as the most basal branch of archaea
in some of the earliest phylogenetic analyses can most likely
be attributed to long-branch attraction (LBA) artifacts [67].
Notably, in recent phylogenetic analyses that include novel
archaeal single cell genomes, Euryarchaeota form a sister
group to other archaeal phyla rather than representing an
early diverging lineage (Figure 1) [33]. Furthermore, gene
content comparisons of extant archaeal lineages and recon-
struction of the putative genetic repertoire of the LACA
do not support methanogenesis as the earliest archaeal
metabolism [57, 68]. In contrast, only one study has so far
placed the root of archaea within a methanogenic order [69]
and thus favors a methanogenic origin of the Third Domain
of life. Gene content comparisons and network analyses that
include novel archaeal single-cell amplified genomes (SAGs)
Could potentially help to further investigate the metabolic
gene repertoire of the archaeal ancestor.

Whereas the origin of methanogenic pathways that
include a multitude of specific genes and cofactors is not
fully resolved yet [72], it appears that several later emerg-
ing euryarchaeal lineages have lost their methanogenic
lifestyles. Thus, as already noted more than a decade ago,
methanogens comprise a paraphyletic group separated by
nonmethanogenic euryarchaeal lineages such as theThermo-
plasmatales, Haloarchaeota, and Archaeoglobales [73]. Inter-
estingly, a novel methanogenic archaeal lineage has been
described recently that is distantly affiliated with cultivated
Thermoplasmatales including Aciduliprofundum sp. [74, 75].
This suggests that the last common ancestor of Thermo-
plasmatales was a methanogen and the capability to reduce
methane has been independently lost several times along
some branches within this group [76] or, albeit less likely, that
some lineages within the Thermoplasmatales have regained
genes for methane production.

A single acquisition of a plethora of genes (>1000) from a
bacterial donor has recently been put forward as explanation
for the transition from a methanogenic ancestor to aerobic
heterotrophic Haloarchaeota [77]. A possible driving force
for this massive gene transfer might have been a syntrophic
relationship between a methanogenic recipient and a bac-
terial donor. However, the exact donor lineage could not
be determined: the acquired genes bear conflicting phylo-
genetic signals, supposedly due to prevalent gene transfers
between different bacterial species. So far, the origin of
alternative energy metabolisms in other non-methanogenic
euryarchaeal lineages that evolved frommethanogenic ances-
tors has not been addressed properly. However, comparative
genomics suggests that several of these lineages have retained
specific genes that trace back to the methanogenic nature of
their ancestor (e.g., Archaeoglobus) [78] and might point to a
rather transient transition.

3. Phylogeny of New Archaeal Phyla
and Lineages

In recent years, several new archaeal lineages have been
identified and subjected to whole genome or metagenomic
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Figure 1: Bayesian phylogeny of 80 representative archaeal species. BLAST databases containing the proteome of 6 new archaeal genomes
were retrieved from NCBI (in bold font on the tree):Methanomassiliicoccus luminyensis B10 (acc. no. CAJE01), MCG SCGC AB539E09 (acc.
no. ALXK01), Marine Benthic Group D (MBGD) SCGC AB539N05, AB539C06, and AB540F20 (acc. no. ALXL01, AOSH01, and AOSI01,
resp.). Protein sequence alignment from the 57 clusters in the discFilter 15 p dataset from [70] for which eukaryotes were removed were
used as an input to psi-blast, with the six new proteomes as a database. Orthologs were retrieved as in [70]. For the three MBGD strains,
one composite set of orthologs was constituted by using the most complete one (AB539C06) whenever possible and complementing with
sequences from the other two if available. Orthologous genes selection, alignment, trimming, and concatenation were performed as in [70]
resulting in a 15,069 amino-acid alignment. Four chains of Bayesian phylogenieswere runwithPhylobayes [71], under theCAT-Poissonmodel,
running for approximately 10000 generations and discarding half as a burn-in.The tree was rooted with bacteria. Posterior probabilities (pp)
are represented by colored dots on the nodes, with support values coloured according to the depicted heat-map colour scheme. The scale
represents the number of substitutions per site. Species are colored according to the following: red, Euryarchaeota; green, Nanoarchaeota
(N) and ARMAN; pink, Korarchaeota (K); black, Misc. Crenarchaeal Group (MCG); orange, Thaumarchaeota and Aigarchaeota (A); blue,
Crenarchaeota. The DNA collection method, if different from pure culture, is indicated by a symbol next to the organism name: square,
coculture; star, metagenome; circle, single-cell genome; triangle, enrichment culture.



4 Archaea

sequencing. Based on phylogenetic analyses of available
genomic data, some of these lineages have been proposed to
represent novel archaeal phyla. Yet, some of these claims have
been challenged or falsified in follow-up studies. Below, we
give an overview of several such examples.

The candidate phylum Nanoarchaeota has initially been
proposed on basis of the extremely divergent 16S rRNA
sequence of the small parasitic cells of Nanoarchaeum equi-
tans growing attached to the cell surface of Ignicococcus
hospitalis [41]. Several subsequent and more comprehensive
phylogenetic analyses as well as the finding of potentially
ancestral genomic features (e.g., split tRNA genes) have pro-
vided support for the initial assignment of this tiny archaeal
cells to a separate ancient archaeal phylum [65, 79, 80]. Yet,
in contrast, other phylogenetic and comparative analyses
testing the taxonomic position of N. equitans have suggested
that Nanoarchaeota might rather represent a fast-evolving
euryarchaeal lineage related toThermococcales [81]. Genomic
data from additional “nanosized” archaea (Ca. Parvarchaeum
acidophilus ARMAN-4 and Ca. Micrarchaeum acidiphilum
ARMAN-2) [82] as well as of a novel deep-branching mem-
ber of Nanoarchaeota (Nst1) [83] have enabled a revision
of phylogenetic reconstructions and genome comparisons.
Although some of these analyses suggest that Nanoarchaeota
and Ca. Parvarchaeum acidophilus are monophyletic, the
placement of these groups in the archaeal tree remains
unclear and is strongly dependent on dataset and phyloge-
netic methods used [64, 83]. For example, in our phyloge-
netic reconstructions Nanoarchaeota (including ARMAN-
lineages) represent a sister clade of the TACK superphylum
(Figure 1), although the support for this clade is low. In a
recent study by Rinke et al. [33], the Nanoarchaeota (includ-
ing all ARMAN strains) were grouped together in the newly
proposed superphylum DPANN with two novel groups,
DSEG and pMC2A384 (designated “Aenigmarchaeota” and
“Diapherotrites”, resp.), as well as the Nanohaloarchaea (see
also below). Given that the phylogenetic methods employed
by Rinke and coworkers do not accommodate rate hetero-
geneity across taxa, the proposed grouping of Nanoarchaeota
with these archaeal clades has to be taken with care and the
exact position of Nanoarchaeota still remains an unresolved
question.

The Nanohaloarchaea represent yet another archaeal
lineage comprised of small cells and with unresolved phy-
logenetic position. Based on both 16S rRNA gene and
concatenated ribosomal protein phylogenies, this group was
suggested to comprise a deep lineage of Haloarchaeota [84].
However, only euryarchaeal sequences were included in these
maximum-likelihood (ML) analyses. Depending on the phy-
logenetic method and evolutionary model used, we obtained
contradictory results for the phylogenetic position of this
group. Whereas ML analyses tend to recover Nanohaloar-
chaea as earliest branching archaeal lineage (e.g., see above),
a phylogenetic reconstruction using Bayesian methods (and
the CATmodel [71]) place this lineage within Euryarchaeota,
but the exact position could not be resolved with high con-
fidence (Figure 1). Results obtained with Bayesian methods
using the CAT model might provide a better approximation
of the position of Nanohaloarchaea, as this model accounts

for rate variations across sites. As such, the early divergence
of Nanohaloarchaea that is observed inML-basedmethods is
likely caused by LBA artifacts. However, novel phylogenetic
analyses including the improved archaeal taxon sampling of
Rinke et al. suggest that Nanohaloarchaea form a distinct
lineage within the proposed superphylum DPANN and are
not closely related to Euryarchaeota [33].

It will be interesting to further address the position of
these organisms in the archaeal tree to be able to eluci-
date whether the adaptation to halophily has evolved only
once in archaea or is due to convergence in Halo- and
Nanohaloarchaea.The latter has received initial support from
comparative genome analyses, which have revealed that each
of these two archaeal groups seems to harbor diverse unique
features including distinctive amino acid compositions to
accommodate high salt conditions [84]. It might also be of
value to address the effect of these novel genome sequences
on the results obtained in the analysis of Nelson-Sathi et al.
studying the origin of Haloarchaeota from a methanogenic
ancestor [77].

Another novel archaeal phylum comprises the abun-
dant and ecologically important ammonia-oxidizing archaea
(AOA). On the basis of comparative genomics and phyloge-
netic analyses based on concatenated ribosomal proteins that
were rooted with eukaryotes, Brochier-Armanet and cowork-
ers proposed that “mesophilic crenarchaeota” constitute the
novel deep branching archaeal phylumThaumarchaeota [42,
85]. Additional comprehensive phylogenetic analyses includ-
ing additional members of this group, as well as the discovery
of a distinctive set of informational processing genes involved
in replication, transcription, and translation as well as DNA
repair and cell division machineries, have provided further
support for the independent status of the Thaumarchaeota
[44]. For example, in contrast to Crenarchaeota, Thaumar-
chaeota share several characteristics with Euryarchaeota and
Korarchaeota including the presence of DNA polymerase
D, histones, and cell division protein FtsZ. Furthermore,
they contain putative “ancestral” features absent from Cren-
or Euryarchaeota but common in Bacteria and eukaryotes
(e.g., presence of an unsplit gene encoding DNA polymerase
subunit A, and toposimerase IB as well as the absence of
ribosomal protein LXa) [20, 44, 85]. The distinct nature of
Thaumarchaeota has been accepted by many authors [45,
46, 86, 87] although the taxonomic borders of this phylum
are still difficult to delineate and might only be resolved
when genomes of uncultivated early branching lineages are
made available. The early emergence of Thaumarchaeota
in these phylogenetic reconstructions using eukaryotes as
outgroup was initially assumed to indicate the ancient nature
of this phylum [42, 44]. However, several recent phylogenetic
analyses have recovered a monophyletic group of Thaum-,
Aig-, Cren, Korarchaeota, and eukaryotes (with varying
relationships in between these groups) to the exclusion of
Euryarchaeota, which indicates that eukaryotes emerge from
within the Archaea [55, 56, 88]. Thus, eukaryotes cannot be
used as valid outgroup for the rooting of archaeal phylogenies
[54].

Another lineage that emerges as a separate branch in
the archaeal tree is comprised of the so-called Hot Water
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Crenarchaeotic Group I (HWCG I), members of which have
been detected in diverse hydrothermal environments but
have not yet been cultivated [89, 90]. Until recently, the sole
representative with a sequenced genome in this group was
Ca.Caldiarchaeum subterraneum, whose composite genome
has been obtained from a metagenomic library of a micro-
bial mat in a subsurface geothermal water stream [45].
The investigation of its genome sequence has revealed the
presence of components of the eukaryotic ubiquitin-like
protein modifier system previously not detected in archaea
or bacteria.This unique trait, as well as comparative genomics
and phylogenetic analyses of concatenated protein sequences,
suggested that this organism and other members of HWCG I
might constitute a novel phylum (Aigarchaeota), distinct
from bothThaum- and Crenarchaeota [45]. However, due to
the presence of a set of informational processing genes most
similar to Thaumarchaeota [45] and the highly supported
monophyletic grouping of these two lineages in diverse
phylogenetic analyses (e.g., see Figure 1), the separation of
Thaum- and Aigarchaeota into two distinct phyla is still
debated [45, 55, 56, 64, 91, 92].

Uncultivated archaea belonging to the so-called Miscel-
laneous Crenarchaeotal Group (MCG) (e.g., [39]) have been
suggested to represent additional members of Aigarchaeota
[55]. Recently, the first single-cell genome of a member of
this group has been obtained and phylogenetic analyses of
concatenated conserved single copy genes placed the MCG-
archaeon as a lineage in between Thaum- and Aigarchaeota
[97]. However, our analyses rather suggest thatMCGemerges
prior to the Thaum/Aigarchaeota (Figure 1). The availability
of additional genome sequences of members of this group as
well as the comparison of informational processing marker
genes [44] of MCG-archaea with other available archaeal
genomes might help both to resolve their phylogenetic
placement and to determinewhetherMCG-archaea comprise
a separate archaeal phylum [39].

Geoarchaeota represents yet another recently proposed
archaeal phylum, which is proposed to emerge as a basal
lineage of Crenarchaeota and includes the so-called novel
archaeal group I (NAG-1) detected in acidic ferric iron mats
from Yellowstone National Park [46, 98]. NAG-1 organisms
thrive in hot (60–78∘C) acidic mats rich in iron and are
suggested to grow heterotrophically from simple carbon
compounds. Though not yet enriched in culture, nearly full-
length genome sequences of members of this group have
been obtained from a de novo metagenome assembly. The
description of this lineage as a separate phylum was based
on phylogenetic analyses of concatenated ribosomal proteins
and 16S/23S rRNA genes as well as on its specific set of infor-
mational processing genes with features in common with
either Crenarchaeota or Thaum- and Aigarchaeota [46].
However, our analyses, based on a larger dataset, place
Geoarchaeota as an early branching lineage of the crenar-
chaeal order Thermoproteales (Figure 1). This observation
is confirmed by Rinke et al., who sequenced six additional
NAG-1-related strains [33]. Indeed, detailed phylogenetic
analyses, as well as comparative assessment of the NAG-1
composite genome, seem to refute the phylum-level status

of NAG-1 (Guy, L., Spang, A., Saw, J.H. and Ettema, T.J.G.,
unpublished observation).

4. Archaea and the Origin of Eukaryotes

The origin of the eukaryotes remains one of the major
unanswered questions in modern biology, and archaea have
recently reclaimed the spotlights in heated discussions entail-
ing this enigmatic event. A central issue in this discussion
entails the placement of the root within the Tree of Life,
as it has a fundamental effect on any hypothesis on the
origin of eukaryotes. Whereas diverse competing hypotheses
have been put forward in the past, no consensus has been
reached on this topic so far. For instance, several studies,
including a recent network analysis, place the root between
Archaea and Bacteria [99–104]. This view is in agreement
with both the observed fundamental differences distinguish-
ing the bacterial and archaeal domains as well as with the
geological record. In contrast, studies that were based on
transmission analyses or the distribution of indels in protein
sequences suggested a rooting within the bacterial domain
[105–107], whereas a root in the archaeal domain has been
proposed based on analyses of protein folds or the evolution
of the tRNA molecules [108, 109]. Yet other hypotheses
state that LUCA was a eukaryotic-like organism [110, 111].
Certainly, in order to reach a consensus on this controversial
discussion, additional data and analyses are needed. Bearing
the uncertainty of the placement of the root in the Tree of Life
in mind, we will present current hypotheses on the origin of
eukaryotes below, by providing a short review on the most
commonly proposed scenarios.

Even though a wide variety of incompatible theories have
been suggested regarding the origin of the eukaryotic cell,
three aspects are now largely accepted: (i) the last eukary-
otic common ancestor (LECA) contained mitochondria, (ii)
eukaryotic genomes are chimeric; whereas informational
genes are of archaeal descent, many metabolic genes are
derived from Bacteria, and (iii) eukaryotes complement a
set of proteins not found in either Archaea or Bacteria,
the eukaryotic signature proteins (ESPs). Beyond this, the
picture becomes blurry. Currently, two major questions
are of interest. What was the nature of the cell that was
host in the mitochondrial endosymbiosis and when did
cellular complexity evolve, before (complexity-first) or after
(mitochondria-first) mitochondrial endosymbiosis? From
this perspective, theories on eukaryogenesis can be divided
into two categories. In the first scenario, the host was a
protoeukaryote and complexity evolved first. This theory,
often referred to as the “archezoa hypothesis” [112, 113],
fits with the three domains tree of life model in which
eukaryotes vertically evolved from the archaea-eukaryote
common ancestor (Figure 2(a)). In the second scenario, the
hostwas a prokaryote and the acquisition of themitochondria
likely triggered the evolution of cellular complexity.The latter
are often referred to as “fusion” hypotheses [51, 58, 93, 95,
96] and these are generally incompatible with the classical
three domains model. Rather, in these models, Bacteria and
Archaea are the primary domains of life and eukaryotes a sec-
ondary, or derived, domain of life (Figure 2(b)).Theories that
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(a) (b)

(c) (d)

Figure 2: Overview of theories regarding the origin of the eukaryotic nuclear lineage. (a)The classical, Woesean three domains of life tree in
which the nuclear lineage vertically evolved from the archaea-eukaryote common ancestor. (b) The fusion tree in which the nuclear lineage
originated from the archaeal partner in the fusion. Depending on which fusion model, the archaeal parent’s lineage (𝐴

1

) was either part
of the euryarchaeota [SET [93], original syntrophy hypothesis [94], hydrogen hypothesis [95] or alternative syntrophy hypothesis [51]], the
Crenarchaeota (eocyte hypothesis) [96], or the TACK superphylum (PhAT) [58]. “𝐴

2

” represents all archaea not directly affiliated with “𝐴
1

.”
(c)The neomuran tree in which the eukaryotic and archaeal lineage (combined referred to as “neomurans”), evolved vertically from ancestor
shared with actinobacteria (𝐵

2

) as a result of the loss of bacterial-type cell wall (the neomuran revolution). 𝐵
1

represents all bacteria not
directly affiliated with 𝐵

2

. (d)The eukaryote-early tree, which suggests that the last common universal ancestor was more eukaryote-like than
prokaryote-like.

fit neither of these categories exist as well. These include the
neomuran hypothesis [114] (Figure 2(c)), the PVC hypoth-
esis [115–118], virus-assisted eukaryogenesis [119–122], and
a hypothesis suggesting a eukaryote-like universal common
ancestor [110] (Figure 2(d)). In order to choose the correct
category with high confidence, evidence is needed in the
form of protoeukaryote intermediate lineage’s descendants
(“missing links”). Unfortunately, for either category, none
has been found so far. Whereas the archezoa theory has
lost much support ever since remnants of mitochondria
were found in the previously thought archezoa (for review,
see [123]), the fusion theory has slowly been gaining favor.
Initially lightly supported by ribosomal structural features
[124] and an 11-amino acid insertion in EF-1𝛼/EF-Tu [125,
126] shared between eocytes (Crenarchaeota) and eukaryotes
to the exclusion of other prokaryotes, it has now received
strong support from phylogenomic [55, 56, 70, 88, 127, 128]
and gene similarity network analyses [129]. In addition,
a large number of ESPs has been found in Archaea, in
particular within the recently proposed TACK superphylum
[55]. Examples include actin [53, 130], tubulin [28], H3/H4-
type histones [55], ESCRT-III [24, 25, 131], and components
of the ubiquitin modifier system [45]. Fusion models can
be subdivided based upon the nature of the end-product of

the “fusion”. In amitochondriate models the symbiosis results
in a eukaryotic progenitor lacking mitochondria. They are
similar to the archezoa theory in the sense that the origin
of eukaryotes and the origin of mitochondria are separate
events. These include the serial endosymbiosis theory (SET)
[93], the original syntrophy hypothesis [94], and the eocyte
hypothesis [96]. In mitochondriate models, the end product
is a eukaryotic progenitor containing mitochondria. Here,
the origin of eukaryotes and mitochondria are one and the
same. These include the hydrogen hypothesis [95], the alter-
native syntrophy hypothesis [51] and the recently proposed
phagocytosing archaeon theory [53, 58]. With exception of
the eocyte hypothesis, all fusion theories suggest an archaeal
host. Based on extensive, in-depth phylogenomic studies,
the archaeal host most likely emerged from within the
TACK superphylum [55, 56, 70]. Interestingly, out of all
TACK phyla, a sister relationship between the Korarchaeota
and eukaryotes was retrieved with significant phylogenetic
support [56, 70]. Even though this placement could be a
taxon sampling artifact (Korarchaeota are represented by a
single, deep rooting taxon), it could also indicate that eukar-
yotes are affiliated with an unidentified lineage distantly
related to Korarchaeota. Genomically unexplored lineages
such as DSAG (Deep Sea Archaea Group), MHVG (Marine
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Hydrothermal Vent Group), and AAG (Ancient Archaea
Group) are likely candidates [55, 70].

5. Genomic Assessment and Taxonomic
Classification of Archaeal Diversity

Recent progress in genomic sequencing technologies and
cultivation-independent methods has started to unearth a
plethora of novel, uncultivated archaeal lineages. The avail-
ability of such genomic data has revealed several important
insights into the diversity, ecological relevance, metabolic
capacity, and the origin and evolution of the archaeal domain
of life. Several new archaeal lineages have been obtained
by means of metagenomics approaches, such as sequencing
of enrichment cultures or environmental samples. Exam-
ples of the former include the first korarchaeal genome
[43] and several of the available thaumarchaeal genomes
(e.g. [132, 133]). Archaeal genomes that have been retrieved
from metagenomic datasets include the first thaumarchaeal
genome (Ca. Cenarchaeum symbiosum [134]), the genome
of the proposed Aigarchaeon Ca. C. subterraneum [45],
the proposed Geoarchaeon NAG-1 [46], representatives of
the Nanohaloarchaea [84], several ARMAN lineages that
were part of an acid mine drainage microbial community
[82], and a genome derived from a representative of the
uncultivated marine group II euryarchaeota [135] (Figure 1).
More recently, a number of studies have employed single
cell genomic approaches to probe the genetic diversity of
uncultivated archaea. For example, Lloyd and coworkers have
reported the first genomic data of a representative of theMis-
cellaneous Crenarchaeal Group (MCG) and of members of
the Marine Benthic Group D that were isolated from marine
sediments and speculate that these lineages are involved in
the degradation of detrital proteins [97] (Figure 1). Another
large scale study that aimed at uncovering the coding poten-
tial of so-called “microbial dark matter” using single cell
genomics approaches reported several genome sequences of
cells that potentially represented novel phylum-level archaeal
lineages, including the members of the uncultured DSEG
and pMC2A384 clades, designated Aenigmarchaeota and
Diapherotrites, respectively [33]. A combination of single cell
genomics and metagenomics has been used to sequence the
genome of the thaumarchaeon Ca. Nitrosoarchaeum limnia
SFB1 [136].

Obviously, single cell and metagenomics-oriented pro-
jects will continue to probe the existing archaeal diversity
during the coming years, and most likely, the availability
of genomic data will reveal interesting insights into novel
characteristics and the diversity within the Third Domain
of life. In addition, the availability of such genomic data
is likely to trigger discussions regarding the higher-order
taxonomic classification of the major archaeal lineages. To
many (micro-)biologists, it would appear that the archaeal
domain is far less diverse than the bacterial domain. A
reason for this could be, for instance, the discrepancy in
assigned or proposed phyla, which ranges from a handful
in Archaea, to well over a hundred in Bacteria. But is it
really fair to say that the bacterial domain of life is more
diverse than that of the Archaea? Whereas bacterial phyla

generally have been assigned based on the diversity of the 16S
rDNA gene sequence, archaeal taxonomy is largely founded
on historic grounds, that is, adhering to the classical Cren-
Euryarchaeota dichotomy (sensu Woese [30]). Only during
the past decade, a handful of additional archaeal phyla have
been proposed based on genome sequencing, such as the
Nano-, Kor-, and Thaumarchaeota and a few other lineages
that may or may not represent phylum-level archaeal clades
(also see above). Yet, themajority of archaeal species that have
been sequenced in recent years have been assigned to the
phyla Cren- or Euryarchaeota, each of which now comprise
genetically distinct groups, which differ in terms ofmetabolic
capacity, lifestyle, and environmental distribution. In light
of this and of the abovementioned “superficial” imbalance
in bacterial versus archaeal diversity, one could argue that
a revision of archaeal higher-order taxonomy is in place.
The suggestion to bring order into archaeal systematics was
recently put forward [92], but thus far, a framework as to how
novel phyla and/or superphyla should be defined is debated.
Nevertheless, to be able to fully appreciate the overall archaeal
diversity and compare it to the diversity observed within
the bacterial domain of life, a reappraisal of the archaeal
taxonomy, whether it will be at the level of rRNA genes, large
datasets of concatenated protein sequences, genome content,
or gene networks analyses, seems to be a conditio sine qua non.
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