269 research outputs found

    Discovery of a 270 Hz X-Ray Burst Oscillation in the X-Ray Dipper 4U 1916-053

    Get PDF
    We report the discovery of a highly coherent oscillation in a type-I X-ray burst observed from 4U 1916-053 by the Rossi X-ray Timing Explorer (RXTE). The oscillation was most strongly detected approx. 1 s after the burst onset at a frequency of 269.3 Hz, and it increased in frequency over the following 4 seconds of the burst decay to a maximum of around 272 Hz. The total measured drift of 3.58 +/- 0.41 Hz (1 sigma) represents the largest fractional change in frequency (1.32 +/- 0.15 %) yet observed in any burst oscillation. If the asymptotic frequency of the oscillation is interpreted in terms of a decoupled surface burning layer, the implied neutron star spin period is around 3.7 ms. However, the expansion of the burning layer required to explain frequency drift during the burst is around 80 m, substantially larger than expected theoretically (assuming rigid rotation). The oscillation was not present in the persistent emission before the burst, nor in the initial rise. When detected its amplitude was 6-12% (RMS) with a roughly sinusoidal profile. The burst containing the oscillation showed no evidence for photospheric radius expansion, while at least 5 of the other 9 bursts observed from the source by RXTE during 1996 and 1998 did. No comparable oscillations were detected in the other bursts. A pair of kilohertz quasi-periodic oscillations (QPOs) has been previously reported from this source with a mean separation of 348 +/- 12 Hz. 4U 1916-053 is the first example of a source where the burst oscillation frequency is significantly smaller than the frequency separation of the kHz QPOs.Comment: 8 pages, 2 figures, 2 tables; accepted for ApJ Letter

    Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka

    Get PDF
    Harzburgitic xenoliths cut by pyroxenite veins from Avachinsky volcano, Kamchatka, are derived from the sub-arc mantle and record element transfer from the slab to the arc. Olivine and orthopyroxene in the harzburgites have Li isotopic compositions (δ7Li = +2.8 to +5.6) comparable to estimates of the upper mantle (δ7Li ~ +4 ± 2). The pyroxenite veins, which represent modal metasomatism and may therefore provide information about the metasomatic agent, have mantle-normalized trace element characteristics that suggest overprinting of their mantle source by an aqueous, slab-derived fluid. These include relative enrichments of Pb over Ce, U over Th and Sr over Nd. Li is enriched relative to the HREE, and ortho- and clinopyroxene from the veins are in Li elemental and isotopic equilibrium with each other and the surrounding harzburgite. Vein samples (δ7Li = +3.0 to +5.0) do not record a significant slab-derived δ7Li signature. These observations can be reconciled if slab Li diffusively re-equilibrates in the mantle wedge. Modeling demonstrates that Li equilibration of small (1–2 cm width) veins or melt conduits is achieved at mantle wedge temperatures within 101–105 years. We conclude that strongly fractionated Li isotopic signatures cannot be sustained for long periods in the sub-arc mantle, at least at shallow (<70 km) depths

    Blueschist from the Mariana forearc records long-lived residence of material in the subduction channel

    Get PDF
    From ca. 50 Ma to present, the western Pacific plate has been subducting under the Philippine Sea plate, forming the oceanic Izu-Bonin-Mariana (IBM) subduction system. It is the only known location where subduction zone products are presently being transported to the surface by serpentinite-mud volcanoes. A large serpentine mud “volcano” forms the South Chamorro Seamount and was successfully drilled by ODP during Leg 195. This returned mostly partially serpentinized harzburgites enclosed in serpentinite muds. In addition, limited numbers of small (1 mm–1 cm) fragments of rare blueschists were also discovered. U–Pb dating of zircon and rutile from one of these blueschist clasts give ages of 51.1 ± 1.2 Ma and 47.5 ± 2.0 Ma, respectively. These are interpreted to date prograde high-pressure metamorphism. Mineral equilibria modelling of the blueschist clast suggests the mineral assemblage formed at conditions of ∼1.6 GPa and ∼590 °C. We interpret that this high-pressure assemblage formed at a depth of ∼50 km within the subduction channel and was subsequently exhumed and entrained into the South Chamorro serpentinite volcano system at depths of ∼27 km. Consequently, we propose that the material erupted from the South Chamarro Seamount may be sampling far greater depths within the Mariana subduction system than previously thought. The apparent thermal gradient implied by the pressure–temperature modelling (∼370 °C/GPa) is slightly warmer than that predicted by typical subduction channel numerical models and other blueschists worldwide. The age of the blueschist suggests it formed during the arc initiation stages of the proto-Izu-Bonin-Mariana arc, with the P–T conditions recording thermally elevated conditions during initial stages of western Pacific plate subduction. This indicates the blueschist had prolonged residence time in the stable forearc as the system underwent east-directed rollback. The Mariana blueschist shows that subduction products can remain entrained in subduction channels for many millions of years prior to exhumation

    Challenges of determining frequency and magnitudes of explosive eruptions even with an unprecedented stratigraphy

    Get PDF
    Through decades of field studies and laboratory analyses, Volcán de Colima, Mexico has one of the best known proximal eruption stratigraphies of any volcano, yet the frequency and magnitudes of previous eruptions are still poorly resolved. Hazard assessments based on models of well-known, well-mapped recent eruptions may appear to have low uncertainty, but may be biased by the nature of those events. We present a comprehensive stratigraphy of explosive eruption deposits combining new data collected as part of this study together with published and unpublished data. For the first time we have been able to model five of the best exposed and cross-correlated pre-historical Holocene explosive events at Volcán de Colima. By modelling the volumes and magnitudes of Holocene eruptions at Volcán de Colima, we are able to improve estimations of the potential range of magnitudes of future explosive eruptions, which can be incorporated into hazard assessments for nearby communities. Based on recent studies we demonstrate that these volumes may be underestimated by at least an order of magnitude, and show that even with an exceptionally well-defined stratigraphic record our understanding of the full range of explosive eruptions may still be biased

    A limited role for metasomatized sub-arc mantle in the generation of boron isotope signatures of arc volcanic rocks

    Get PDF
    Metasomatized sub-arc mantle is often regarded as one of the mantle reservoirs enriched in fluid mobile elements (FME, e.g. B, Li, Cs, As, Sb, Ba, Rb, Pb) which, when subject to wet melting, will contribute to the characteristic FME-rich signature of arc volcanic rocks. Evidence of wet melts in the sub-arc mantle wedge is recorded in metasomatic amphibole-, phlogopite- and pyroxene-bearing veins in ultramafic xenoliths recovered from arc volcanoes. Our new B and δ11B study of such veins in mantle xenoliths from Avachinsky and Shiveluch volcanoes, Kamchatka arc, indicates that slab-derived FME, including B and its characteristically high δ11B, are delivered directly to a melt that experiences limited interaction with the surrounding mantle before eruption. The exceptionally low B contents (from 0.2 to 3.1 µg g-1) and low δ11B (from -16.6 to +0.9 ‰) of mantle xenolith vein minerals are, instead, products of fluids and melts released from the isotopically light subducted and dehydrated altered oceanic crust (AOC) and, to a lesser extent, from isotopically heavy serpentinite. Therefore, melting of amphibole-, and phlogopite-bearing veins in metasomatized mantle wedge cannot alone produce the characteristic FME geochemistry of arc volcanic rocks, which require a comparatively large, isotopically heavy and B-rich serpentinite-derived fluid component in their source

    How Will Copper Contamination Constrain Future Global Steel Recycling?

    Get PDF
    Copper in steel causes metallurgical problems, but is pervasive in end-of-life scrap and cannot currently be removed commercially once in the melt. Contamination can be managed to an extent by globally trading scrap for use in tolerant applications and dilution with primary iron sources. However, the viability of long-term strategies can only be evaluated with a complete characterization of copper in the global steel system and this is presented in this paper. The copper concentration of flows along the 2008 steel supply chain is estimated from a survey of literature data and compared with estimates of the maximum concentration that can be tolerated in steel products. Estimates of final steel demand and scrap supply by sector are taken from a global stock-saturation model to determine when the amount of copper in the steel cycle will exceed that which can be tolerated. Best estimates show that quantities of copper arising from conventional scrap preparation can be managed in the global steel system until 2050 assuming perfectly coordinated trade and extensive dilution, but this strategy will become increasingly impractical. Technical and policy interventions along the supply chain are presented to close product loops before this global constraint.K.D. is funded by a Cambridge Trust scholarship. A.S. and J.A. are funded by EPSRC, grant reference EP/N02351X/1

    Fractal-dimensional properties of subordinators

    Get PDF
    This work looks at the box-counting dimension of sets related to subordinators (non-decreasing Lévy processes). It was recently shown in Savov (Electron Commun Probab 19:1–10, 2014) that almost surely limδ→0U(δ)N(t,δ)=t , where N(t,δ) is the minimal number of boxes of size at most δ needed to cover a subordinator’s range up to time t, and U(δ) is the subordinator’s renewal function. Our main result is a central limit theorem (CLT) for N(t,δ) , complementing and refining work in Savov (2014). Box-counting dimension is defined in terms of N(t,δ) , but for subordinators we prove that it can also be defined using a new process obtained by shortening the original subordinator’s jumps of size greater than δ . This new process can be manipulated with remarkable ease in comparison with N(t,δ) , and allows better understanding of the box-counting dimension of a subordinator’s range in terms of its Lévy measure, improving upon Savov (2014, Corollary 1). Further, we shall prove corresponding CLT and almost sure convergence results for the new process
    corecore