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ABSTRACT
Metasomatized subarc mantle is often regarded as one of the mantle reservoirs enriched 

in fluid-mobile elements (FMEs; e.g., B, Li, Cs, As, Sb, Ba, Rb, Pb), which, when subject to 
wet melting, will contribute to the characteristic FME-rich signature of arc volcanic rocks. 
Evidence of wet melts in the subarc mantle wedge is recorded in metasomatic amphibole-, 
phlogopite-, and pyroxene-bearing veins in ultramafic xenoliths recovered from arc volcanoes. 
Our new B and δ11B study of such veins in mantle xenoliths from Avachinsky and Shiveluch 
volcanoes, Kamchatka arc, indicates that slab-derived FMEs, including B and its character-
istically high δ11B, are delivered directly to a melt that experiences limited interaction with 
the surrounding mantle before eruption. The exceptionally low B contents (from 0.2 to 3.1 
µg g–1) and low δ11B (from –16.6‰ to +0.9‰) of mantle xenolith vein minerals are, instead, 
products of fluids and melts released from the isotopically light subducted and dehydrated 
altered oceanic crust and, to a lesser extent, from isotopically heavy serpentinite. Therefore, 
melting of amphibole- and phlogopite-bearing veins in a metasomatized mantle wedge can-
not alone produce the characteristic FME geochemistry of arc volcanic rocks, which require 
a comparatively large, isotopically heavy and B-rich serpentinite-derived fluid component 
in their source.

INTRODUCTION
Direct observation of the processes of ele­

ment transfer and isotope fractionations associ­
ated with slab dehydration in subduction zones 
is not possible. However, the classic study of 
Tatsumi (1989) suggested that a hydrous compo­
nent released from dehydrating slabs in subduc­
tion zones is responsible for the depression of 
the wet solidus in depleted mantle wedge harz­
burgite, thus generating fluid-mobile element 
(FME)–enriched arc volcanic rocks. Contrary 
to what is seen at mid-ocean ridges, elevated 
water contents of the subarc mantle control the 
extensive melting in subduction zones (Kelley 

et al., 2006). Subsequently, it has been suggested 
that a slab-derived hydrous fluid or melt perco­
lates through the subarc mantle via an intercon­
nected vein network (Pirard and Hermann, 2015; 
Plümper et al., 2016), comprising metasomatic 
mineral phases such as hornblende, phlogopite, 
and pyroxenes (GSA Data Repository Tables 
DR1 and DR21). Previous studies (e.g., Kepe­
zhinskas et al., 1995; Kepezhinskas and Defant, 
1996) speculated that metasomatic veins could 
be mantle reservoirs of slab-derived elements, 
which, upon melting, will generate the char­
acteristic FME-rich signature of arc volcanic 
rocks. In this model, the role of the subducting 
hydrated oceanic plate is central to the genera­
tion of FME-enriched arc volcanic rocks, since 

both primitive mantle and mid-oceanic-ridge 
basalt (MORB) source mantle contain only 
traces of FMEs (McDonough and Sun, 1995; 
Marschall et al., 2017).

Rocks from the subarc mantle are rarely ex­
posed at Earth’s surface. This, in turn, imposes 
constraints on our knowledge of the metasomatic 
processes taking place below volcanic arcs. 
The Kamchatka arc is exceptional because rare 
veined mantle xenoliths have been recovered 
from several volcanoes along the arc, allowing 
insights into the subarc mantle (Kepezhinskas 
et al., 1995; Kepezhinskas and Defant, 1996; Arai 
et al., 2003, 2007; Bryant et al., 2007; Ishimaru 
et al., 2007; Halama et al., 2009; Ionov, 2010; 
Ionov et al., 2011, 2013; Bénard et al., 2017, and 
references therein). Previous Kamchatka studies 
have demonstrated that depleted, harzburgitic, 
subarc mantle has been extensively metasoma­
tized by hydrous slab-derived fluids and melts, 
forming amphibole- and phlogopite-bearing 
veins. The major- and trace-element character­
istics of these veins suggest a transition from 
fluid-induced mantle metasomatism at the vol­
canic front and in the southern part of the Cen­
tral Kamchatka depression (Kepezhinskas and 
Defant, 1996; Arai et al., 2003, 2007; Ishimaru 
et al., 2007; Halama et al., 2009; Ionov, 2010; 
Ionov et al., 2011, 2013; Bénard et al., 2017) to 
mostly melt-induced mantle metasomatism at its 
northern part (Kepezhinskas et al., 1995; Bryant 
et al., 2007; Ionov et al., 2013).

Boron and δ11B (the per mil difference be­
tween the 11B/10B of a sample and NIST [U.S. 
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951 boric acid) have been widely used in studies 
of slab-derived fluids in subduction zones (de 
Hoog and Savov, 2018, and references therein). 
Boron and its isotopic composition (as δ11B) are 
particularly sensitive tracers of slab-derived 
metasomatic agents because of the highly fluid-
mobile nature of B (Hervig et al., 2002). Boron 
is enriched in subducting oceanic lithosphere 
relative to B-poor mantle (e.g., Marschall et al., 
2017), and a wide range of δ11B values (~70‰) 
is preserved in natural materials (e.g., de Hoog 
and Savov, 2018, and references therein). How­
ever, this versatile tracer has not been employed 
previously in the investigation of FME budgets 
in metasomatized (veined) subarc mantle xeno­
liths. Here, we report, for the first time, B and 
δ11B measurements demonstrating that meta­
somatic veins formed by the percolation of hy­
drous melts and fluids through the subarc mantle 
cannot play a significant role in the generation 
of arc magmas.

GEOLOGICAL BACKGROUND
The Kamchatka arc extends from the Kuril 

Islands in the south to northern Kamchatka, 
where it terminates at the Aleutian transform 
fault (Fig. 1). It is situated on the continental 
margin and consists of three volcanic belts: 
the Eastern volcanic front (EVF), the Cen­
tral Kamchatka depression (CKD), and the 
Sredinny Range (SR; e.g., Churikova et al., 
2001; Portnyagin and Manea, 2008). For this 
study, we collected mantle xenoliths from the 
Avachinsky and Shiveluch volcanoes (for min­
eral major-element abundances, petrology, and 

geothermometry, see the Data Repository), in 
addition to revisiting the Shiveluch mantle xeno­
lith suite of Bryant et al. (2007).

Avachinsky volcano is located in the EVF 
(Fig. 1) at a depth-to-slab of ~120 km (Gorbatov 
et al., 1997). It erupts mainly low-K andesites 
to basaltic andesites of calc-alkaline affinity 
(Braitseva et al., 1998) that have the highest 
B contents and δ11B of all studied Kamchatka 
volcanoes (36.3 µg g–1 and +5.58‰ of a single 
sample; Ishikawa et al., 2001). Metasomatized 
harzburgite xenoliths, representative of high-
degree partial melt residues (estimated degree 
of partial melting = 28%–35%; Ionov, 2010), 
were recovered from an andesitic pyroclastic 
flow from the I Av stage of volcanic activity 
(7500–3700 yr ago; Braitseva et al., 1998). 
Spinel-hosted melt inclusions from Avachinsky 
harzburgites record low mantle temperatures (as 
low as 900 °C; Ionov et al., 2011), precluding 
dry mantle melting in the subarc mantle under­
neath the volcano (Hirschmann, 2000).

Shiveluch volcano is situated in the northern 
CKD (Fig. 1) with a depth-to-slab of ~90 km 
(Gorbatov et al., 1997). It consists primarily 
of high-Mg# andesites (Gorbach and Portnya­
gin, 2011; Gorbach et al., 2013) with adakite-
like geochemistry (Kepezhinskas et al., 1997; 
Yogodzinski et al., 2001; Münker et al., 2004). 
These lavas are attributed to the Kamchatka-
Aleutian junction, where hot asthenospheric 
mantle upwells through a slab window (Pey­
ton et al., 2001; Yogodzinski et al., 2001; Levin 
et al., 2005). The temperature of the subarc 
mantle underneath Shiveluch has been esti­
mated to range between 1250 °C and 900 °C 
(Portnyagin and Manea, 2008), and an esti­
mate of the average pre-eruptive temperature 
of Shiveluch andesite is ~840 °C (Humphreys 
et al., 2006). Like Avachinsky, Shiveluch vol­

canic rocks also have high concentrations of B 
and high δ11B ratios (24.9 µg g–1 and +3.58‰ of 
a single sample; Ishikawa et al., 2001) and other 
FMEs, which were attributed to the subduction 
of the Aleutian transform fault underneath the 
CKD (Manea et al., 2014). Melt inclusions in 
Shiveluch volcanic products typically record 
higher B contents of 50–80 µg g–1 but can con­
tain as much as 175 µg g–1 of B (Humphreys 
et al., 2008). An explosive Plinian eruption 
in 1964 (Belousov, 1995) brought a range of 
mantle xenoliths to the surface (Bryant et al., 
2007), some of which are studied here (see Data 
Repository material).

RESULTS
Boron contents and δ11B ratios of the hydrous 

vein minerals (amphibole and phlogopite) and 
nominally anhydrous mantle minerals (olivine, 
pyroxene, and plagioclase) were measured by 
secondary ion mass spectrometry (SIMS) using 
a Cameca 1270 ion microprobe at the University 
of Edinburgh (for analytical methods, see the 
Data Repository).

Avachinsky vein minerals are low in B (0.2–
0.9 µg g–1) and possess light δ11B (–16.6‰ to 
–3.6‰), whereas B contents of Shiveluch vein 
minerals extend to values as high as 3.1 µg g–1 
and higher δ11B (–13.8‰ to +0.9‰; Fig. 2; 
Table DR4). Nominally anhydrous mantle 
minerals have low B contents (0.3–2.1 µg g–1) 
and low δ11B (–13.8‰ to –3.2‰; Fig. DR5). 
Vein minerals in Kamchatka mantle xenoliths 
are only slightly enriched in B relative to de­
pleted mantle (Marschall et al., 2017), and their 
δ11B values do not extend to the higher end of 
the range of δ11B observed in Kamchatka arc 
volcanic rocks (B = 11.2–36.3 µg g–1; δ11B = 
–3.7‰ to +5.6‰; Ishikawa et al., 2001). The 
low B contents and δ11B of the nominally anhy­
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Figure 1. Avachinsky and Shiveluch volcanoes 
(red triangles) on the Kamchatka peninsula. 
Eastern volcanic front (EVF), Central Kam-
chatka depression (CKD), and Sredinny 
Range (SR) are outlined by dashed lines. 
Solid lines outline 80 km and 100 km depth-
to-slab contours (Gorbatov et al., 1997). Figure 
is modified from GeoMapApp (http://​www​
.geomapapp​.org/; Ryan et al., 2009).

Figure 2. δ 11B versus 
1/B in vein minerals in 
Avachinsky (green) and 
Shiveluch (blue) mantle 
xenoliths, Kamchatka 
volcanic rocks (Ishikawa 
et al., 2001), and mid-
oceanic-ridge basalt 
(MORB; Marschall et al., 
2017) and mixing relation-
ships among depleted 
mantle (DM; Marschall 
et al., 2017), serpentinite 
fluid (Tonarini et al., 2011), 
composite slab fluid 
released at 120 km depth, 
and residual slab melt 
(calculated after Tonarini 
et al. [2011], with an addi-
tional dehydration stage 
at 25 km corresponding to 80% B loss in forearc; Savov et al., 2007). Composite fluid consists 
of 99% fluid released from altered oceanic crust and 1% fluid released from sediment. Detailed 
modeling procedure and model input parameters are provided in the Data Repository and 
Table DR5 therein (see text footnote). Boron concentrations and δ11B of nominally anhydrous 
minerals are plotted in Figure DR5. All symbols are larger than error bars, unless shown.
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drous mantle minerals are comparable to pre­
vious studies of mantle composition (Harvey 
et al., 2014, and references therein; Marschall 
et al., 2017) and will not be discussed further.

DISCUSSION
Contrary to earlier predictions of meta­

somatized mantle wedge playing a fundamen­
tal role in generating the characteristic FME-
enriched arc volcanic rocks (e.g., Kepezhinskas 
et al., 1995; Kepezhinskas and Defant, 1996), 
the low B abundances and δ11B values of the 
metasomatized subarc mantle are unexpected. 
The majority of vein compositions can be repro­
duced by mixing of variable amounts of three 
components: (1) isotopically light composite 
slab fluid, (2) residual slab melt, and (3) the 
depleted mantle (Fig. 2; for model input param­
eters, see Table DR5). Slab-derived fluids can 
be generated either by dehydration of mélange 
diapirs in the subarc mantle under the arc front 
(Savov et al., 2007; Nielsen and Marschall, 
2017, and references therein) and/or by ser­
pentine breakdown in the forearc, followed by 
dehydration of altered oceanic crust (AOC) by 
chlorite and amphibole breakdown under the arc 
front, as previously proposed in the Kamchatka 
subduction zone model (Konrad-Schmolke and 
Halama, 2014). Other hydrous minerals typi­
cally constituting the AOC, such as lawsonite 
and phengite, are absent in the top 10 km of the 
subducting slab in Kamchatka and are therefore 
not likely to contribute B to the subarc mantle 
(Konrad-Schmolke and Halama, 2014).

Dehydration of sediments and AOC, in 
response to rising pressure and temperature 
with ongoing subduction, leads to B isotopic 
fractionation between fluids and silicates, spe­
cifically, 11B depletion in silicates. Trigonally 
coordinated 11B preferentially partitions into 
fluids, and tetrahedrally coordinated 10B parti­
tions into silicate minerals and melts in low-pH 
environments (Kakihana et al., 1977; Peacock 
and Hervig, 1999; Hervig et al., 2002; Wunder 
et al., 2005; Pabst et al., 2012; Konrad-Schmolke 
and Halama, 2014). Therefore, vein amphibole 
and phlogopite preserving low δ11B (i.e., <–7‰) 
may have equilibrated with slab fluid released by 
chlorite dehydration in the AOC (Rüpke et al., 
2004; Konrad-Schmolke and Halama, 2014) 
or residual slab melt generated at ~90–120 km 
depth-to-slab, assuming vertical transport of the 
released fluid or melt. In cold subduction zones, 
fully hydrated AOC and sediments dehydrate 
in several steps before they are subducted to 
120 km (Rüpke et al., 2004), where they re­
lease isotopically light B upon their dehydration 
(Fig. 2). Isotopically light fluid, however, could 
also have been released by dehydration of ser­
pentinite that interacted with sediment (Cannaò 
et al., 2015).

The higher δ11B (>–5‰) of some of the vein 
minerals requires at least some forearc serpen­

tinite fluid influx (δ11B = ~14‰; Tonarini et al., 
2011) into the subarc mantle. Vein amphiboles 
with the highest δ11B require up to 15% of their 
B contents to be derived from serpentinite and 
85% from a composite lithology comprising 
99% AOC and 1% sediment (Fig. 2).

Our data demonstrate a negligible contribu­
tion to the otherwise large outfluxes of boron at 
volcanic arcs. The veins represent a volumetri­
cally minor mantle B end member with insuffi­
cient B concentrations to significantly skew the 
composition of the erupted arc volcanic rocks. 
Instead, a slab-derived component enriched in 
11B must transit relatively rapidly through the 
mantle wedge (Fig. 3). In Kamchatka, the lim­
ited sedimentary pile (435 m of ashy-siliceous 
clay; Plank, 2014) and the AOC are not likely 
to carry B deeper than the forearc, as more than 
80% of their original boron content is released 
during shallow slab dehydration (Savov et al., 
2007), and its further dehydration under the arc 
front releases isotopically light fluids (δ11B = 
–5.2‰; Fig. 2).

Several prior studies have established that 
serpentinite can host up to 80 µg g–1 B and retain 
a high δ11B signature of up to +25‰ in shal­
low subduction settings (Benton et al., 2001; 
Scambelluri and Tonarini, 2012; Harvey et al., 
2014; de Hoog and Savov, 2018, and references 
therein). The results of our model suggest that 
fluids from dehydration of subducted forearc 
serpentinite and AOC, rather than metasoma­
tized veins in the subarc mantle, are responsible 
for the boron elemental and isotopic signature of 
Kamchatka arc volcanic rocks (Fig. 2; Ishikawa 
et al., 2001; Churikova et al., 2007).

It has been shown that the initially high δ11B 
value of slab fluid rapidly decreases as it moves 

away from the dehydration site (Prigent et al., 
2018), unless the fluid flow is focused in an 
interconnected vein network (Fig. 3; Pirard and 
Hermann, 2015; Plümper et al., 2016). The fluid 
flow through this vein network must be rapid 
for only limited chemical exchange to occur be­
tween the vein minerals and the percolating slab-
derived fluid (e.g., John et al., 2012). Large vari­
ations of δ11B in amphibole and phlogopite in 
samples SHX03-18, SHX03‑04, and SH98X-16 
(Fig. 2; Table DR4) suggest that the veins inves­
tigated in this study sampled multiple pulses of 
slab-derived fluids and melts originating from 
different depths. Alternatively, the slab-derived 
fluids and melts could have been sourced by 
mélange diapirs in the mantle wedge (Nielsen 
and Marschall, 2017, and references therein) 
that are composed of a mixture of slab and hy­
drated forearc mantle lithologies with variable 
δ11B compositions.

CONCLUSIONS
The boron contents and δ11B values of vein 

minerals in Kamchatka arc xenoliths from 
Shiveluch and Avachinsky volcanoes are incon­
sistent with the interpretation that they provide 
a significant contribution to the boron budget of 
Kamchatka arc volcanic products. The veins re­
cord multiple pulses of fluids and melts percolat­
ing through the subarc mantle, ranging from iso­
topically light AOC-derived fluids and melts to 
isotopically heavy forearc serpentinite-derived 
fluids. The fluid flow appears to be focused in 
veins connecting either the slab dehydration 
sites or mélange diapirs with the magma-gen­
eration region to facilitate the rapid transport of 
heavy B to arc magmas, with limited interaction 
with the vein minerals.
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Figure 3. In Kamchatka, 
slab-derived fluids (black 
arrows) can be gener-
ated either by mélange 
diapir dehydration in 
mantle wedge (Nielsen 
and Marschall, 2017) or by 
(1) serpentine breakdown 
in forearc, and (2) chlorite 
and amphibole break-
down in altered oceanic 
crust (AOC) at 90–120 km 
depth-to-slab. B-rich, 
isotopically heavy, slab-
derived fluid is transferred 
through subarc mantle by 
interconnected network of 
veins crosscutting mantle 
harzburgite, fragments of 
which are entrained into 
magma (orange arrows) 
on its way up to surface 
(inset A). Inset A position 
corresponds to depth 
from which xenoliths were 
derived (30–50 km).
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