85 research outputs found

    Increased Energy Expenditure, Lipolysis and Hyperinsulinemia Confer Resistance to Central Obesity and Type 2 Diabetes in Mice Lacking Alpha2α-Adrenoceptors

    Get PDF
    The α2A-adrenoceptors (ARs) are Gi-coupled receptors, which prejunctionally inhibit the release of norepinephrine (NE) and epinephrine (Epi), and postjunctionally insulin secretion and lipolysis. We have earlier shown that α2A-/- mice display sympathetic hyperactivity, hyperinsulinemia and improved glucose tolerance. Here we employed α2A-/- mice and placed the mice on a high-fat diet (HFD) to test the hypothesis that lack of α2A-ARs protects from diet-induced obesity (DIO) and type 2 diabetes (T2D). In addition, high caloric diet was combined with running wheel exercise to test the interaction of diet and exercise. HFD was obesogenic in both genotypes, but α2A-/- mice accumulated less visceral fat than their WT controls, were protected from T2D, and their insulin secretion was unaltered by the diet. Lack of α2A-ARs associated with increased sympatho-adrenal tone, which resulted in increased energy expenditure and fat oxidation rate potentiated by HFD. Fittingly, α2A-/- mice displayed enhanced lipolytic responses to Epi, and increased fecal lipids suggesting altered fat mobilization and absorption. Subcutaneous white fat appeared to be thermogenically more active (measured as Ucp1 mRNA expression) in α2A-/- mice, and brown fat showed an increased response to norepinephrine. Exercise was effective in reducing total body adiposity and increasing lean mass in both genotypes, but there was a significant diet-genotype interaction, as even modestly increased physical activity combined with lack of α2A-AR signalling promoted weight loss more efficiently than exercise with normal α2A-AR function. These results suggest that blockade of α2A-ARs may be exploited to reduce visceral fat and to improve insulin secretion.

    Brain Apolipoprotein E: an Important Regulator of Food Intake in Rats

    Get PDF
    OBJECTIVE—The worldwide prevalence of obesity is increasing at an alarming rate, along with the associated increased rates of type 2 diabetes, heart disease, and some cancers. While efforts to address environmental factors responsible for the recent epidemic must continue, investigation into the anorectic functions of potential molecules we present here, such as apolipoprotein (apo)E, offers exciting possibilities for future development of successful anti-obesity therapies

    Dedicated plug based closure for large bore access -The MARVEL prospective registry

    Get PDF
    Objectives To study safety and performance of the MANTA Vascular closure device (VCD) under real world conditions in 10 centers. Background The MANTA is a novel plug-based device for large bore arteriotomy closure. Methods We included all eligible patients who underwent transfemoral large bore percutaneous procedures. Exclusion criteria were per operator's discretion and included severe calcification or marked tortuosity of the access vessel, presence of marked obesity/cachexia or a systolic blood pressure above 180 mmHg. The primary performance endpoint was time to hemostasis. Primary and secondary safety endpoints were major and minor access site related vascular complications up to 30 days, respectively. Vascular complications were adjudicated by an independent clinical event committee according to VARC-2 criteria. We performed multivariable logistic regression to estimate the effect of baseline and procedural characteristics on any and major vascular complications. Results Between February 2018 and July 2019 500 patients were enrolled undergoing Transcatheter aortic valve replacement (TAVR, N = 496), Balloon aortic valvuloplasty (BAV, N = 2), Mechanical circulatory support (MCS, N = 1) or Endovascular aneurysm repair (EVAR, N = 1). Mean age was 80.8 +/- 6.6 years with a median STS-score of 2.7 [IQR 2.0-4.3] %. MANTA access site complications were major in 20 (4%) and minor in 28 patients (5.6%). Median time to hemostasis was 50 [IQR 20-120] sec. Severe femoral artery calcification, scar presence in groin, longer procedure duration, female gender and history of hypertension were independent predictors for vascular complications. Conclusion In this study, MANTA appeared to be a safe and effective device for large bore access closure under real-world conditions.Peer reviewe

    Dedicated plug based closure for large bore access -The MARVEL prospective registry

    Get PDF
    Objectives To study safety and performance of the MANTA Vascular closure device (VCD) under real world conditions in 10 centers.Background The MANTA is a novel plug-based device for large bore arteriotomy closure.Methods We included all eligible patients who underwent transfemoral large bore percutaneous procedures. Exclusion criteria were per operator's discretion and included severe calcification or marked tortuosity of the access vessel, presence of marked obesity/cachexia or a systolic blood pressure above 180 mmHg. The primary performance endpoint was time to hemostasis. Primary and secondary safety endpoints were major and minor access site related vascular complications up to 30 days, respectively. Vascular complications were adjudicated by an independent clinical event committee according to VARC-2 criteria. We performed multivariable logistic regression to estimate the effect of baseline and procedural characteristics on any and major vascular complications.Results Between February 2018 and July 2019 500 patients were enrolled undergoing Transcatheter aortic valve replacement (TAVR, N = 496), Balloon aortic valvuloplasty (BAV, N = 2), Mechanical circulatory support (MCS, N = 1) or Endovascular aneurysm repair (EVAR, N = 1). Mean age was 80.8 +/- 6.6 years with a median STS-score of 2.7 [IQR 2.0-4.3] %. MANTA access site complications were major in 20 (4%) and minor in 28 patients (5.6%). Median time to hemostasis was 50 [IQR 20-120] sec. Severe femoral artery calcification, scar presence in groin, longer procedure duration, female gender and history of hypertension were independent predictors for vascular complications.Conclusion In this study, MANTA appeared to be a safe and effective device for large bore access closure under real-world conditions

    Tumor Associated Stromal Cells Play a Critical Role on the Outcome of the Oncolytic Efficacy of Conditionally Replicative Adenoviruses

    Get PDF
    The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd) is still limited by the inefficient infection of the tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor-associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(I)-F512-TK, respectively) exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co-administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(I)-F512-TK on SPARC-negative MIA PaCa-2 pancreatic cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses

    Metabolic Regulation in Progression to Autoimmune Diabetes

    Get PDF
    Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes

    Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress

    Get PDF
    The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall
    corecore