62 research outputs found
Crosspresentation by dendritic cells,â
MHC class I-loading complex A series of endoplasmic reticulum chaperone proteins that stabilize empty MHC class I molecules and control the loading of high-affinity peptides onto MHC class I molecules. Cross-presentation by dendritic cells Abstract | The presentation of exogenous antigens on MHC class I molecules, known as cross-presentation, is essential for the initiation of CD8 + T cell responses. In vivo, cross-presentation is mainly carried out by specific dendritic cell (DC) subsets through an adaptation of their endocytic and phagocytic pathways. Here, we summarize recent advances in our understanding of the intracellular mechanisms of cross-presentation and discuss its role in immunity and tolerance in the context of specialization between DC subsets. Finally, we review current strategies to use cross-presentation for immunotherapy
Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3
International audienceThe regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor. INTRODUCTION Microtubules (MTs) are polarized structures that continuously switch between periods of polymerization and depolymerization at their growing (plus) ends. This process, termed MT dynamic instability, allows rapid reorganization of the MT cytoskeleton during essential cell functions such as cell polarity and migration, mitosi
Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function
Endometrial Cancer is the most common cancer in the female genital tract in developed countries, and with its increasing incidence due to risk factors such as aging and obesity tends to become a public health issue. However, its immune environment has been less characterized than in other tumors such as breast cancers. NK cells are cytotoxic innate lymphoid cells that are considered as a major anti-tumoral effector cell type which function is drastically altered in tumors which participates to tumor progression. Here we characterize tumor NK cells both phenotypically and functionally in the tumor microenvironment of endometrial cancer. For that, we gathered endometrial tumors, tumor adjacent healthy tissue, blood from matching patients and healthy donor blood to perform comparative analysis of NK cells. First we found that NK cells were impoverished in the tumor infiltrate. We then compared the phenotype of NK cells in the tumor and found that tumor resident CD103+ NK cells exhibited more co-inhibitory molecules such as Tigit, and TIM-3 compared to recruited CD103â NK cells and that the expression of these molecules increased with the severity of the disease. We showed that both chemokines (CXCL12, IP-10, and CCL27) and cytokines profiles (IL-1ÎČ and IL-6) were altered in the tumor microenvironment and might reduce NK cell function and recruitment to the tumor site. This led to hypothesize that the tumor microenvironment reduces resident NK cells cytotoxicity which we confirmed by measuring cytotoxic effector production and degranulation. Taken together, our results show that the tumor microenvironment reshapes NK cell phenotype and function to promote tumor progression
HER3 as biomarker and therapeutic target in pancreatic cancer: new insights in pertuzumab therapy in preclinical models.
International audienceThe anti-HER2 antibody pertuzumab inhibits HER2 dimerization and affects HER2/HER3 dimer formation and signaling. As HER3 and its ligand neuregulin are implicated in pancreatic tumorigenesis, we investigated whether HER3 expression could be a predictive biomarker of pertuzumab efficacy in HER2low-expressing pancreatic cancer. We correlated in vitro and in vivo HER3 expression and neuregulin dependency with the inhibitory effect of pertuzumab on cell viability and tumor progression. HER3 knockdown in BxPC-3 cells led to resistance to pertuzumab therapy. Pertuzumab treatment of HER3-expressing pancreatic cancer cells increased HER3 at the cell membrane, whereas the anti-HER3 monoclonal antibody 9F7-F11 down-regulated it. Both antibodies blocked HER3 and AKT phosphorylation and inhibited HER2/HER3 heterodimerization but affected differently HER2 and HER3 homodimers. The pertuzumab/9F7-F11 combination enhanced tumor inhibition and the median survival time in mice xenografted with HER3-expressing pancreatic cancer cells. Finally, HER2 and HER3 were co-expressed in 11% and HER3 alone in 27% of the 45 pancreatic ductal adenocarcinomas analyzed by immunohistochemistry. HER3 is essential for pertuzumab efficacy in HER2low-expressing pancreatic cancer and HER3 expression might be a predictive biomarker of pertuzumab efficacy in such cancers. Further studies in clinical samples are required to confirm these findings and the interest of combining anti-HER2 and anti-HER3 therapeutic antibodies
Rab27a and Rab27b control different steps of the exosome secretion pathway
Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo
Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics
Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0
7 1017 eV -2.5
7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4
7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
Trafic intracellulaire pendant la présentation croisée des antigÚnes dans les cellules dendritiques
PARIS5-BU MĂ©d.Cochin (751142101) / SudocSudocFranceF
A [Docetaxel-Trastuzumab] immunoliposome designed for breast cancer: In vivo proof of concept studies.
International audienc
Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVγ9+ γΎ T lymphocytes
International audienceHuman γΎ cells expressing TCRVÎł9 are T lymphocytes with great potential for cancer immunotherapy and unconventional pattern of antigen specificity. These HLA-unrestricted lymphocytes are specifically reactive to non-peptide metabolites (phosphoantigens) and to the butyrophilin 3A (BTN3A/CD277) protein. Whether recognition of such highly different structures trigger the same activation signaling pathway remains unclear, however. Here we combined fluorescent cell barcoding and phosphoflow analysis of TCRVÎł9(+) T lymphocytes to compare simultaneously the level of several signaling phosphoproteins after activation by phosphoantigen (BrHPP) or by anti-BTN3A (monoclonal antibody 20.1). This approach shows that the same pathways involving ZAP70, PLCÎł2, Akt, NFÎșB p65, MAPK p38 and Erk1, were induced by either of these stimuli. These data strongly suggest the TCRVÎł9(+) T lymphocytes detect phosphoantigens and butyrophilin A3 by the same recognition process
Characterization, in vitro and in vivo efficacy studies of docetaxel-trastuzumab stealth immunoliposome in human breast cancer models.
International audienc
- âŠ