95 research outputs found

    Three Dimensional Wave Propagation due to Pile Driving

    Get PDF
    A very economical and efficient method to construct pile foundations or sheet walls is given by the driving of the pile itself in the case of prefabricated piles or of the steel-sheet pipe for concrete piles in situ and also by the driving of the sheet piles in the case of sheet walls. In spite of its efficiency this method underlies, because of environment protection reasons to certain restrictions that concern the influence of the produced shock waves during the driving procedure to neighboring buildings and constructions. For the theoretical calculation of this influence at first the free-field response of the ground due to the propagated shock waves will be required. The source wave is generally of transient nature. The authors deal in this contribution with the theoretical calculation of free-field magnitudes for an elastic homogeneous half-space as an adequate model for an idealized ground

    Dynamic Interaction Between Rail Track Systems and the Layered Subsoil Solutions in the Frequency-and Time Domain

    Get PDF
    For the numerical simulation of dynamic soil-structure interaction problems both a frequency and a time domain formulation are presented. In order to be capable to consider more sophisticated models of the structure, the frequency domain algorithms for homogeneous and layered halfspaces have been coupled to the Finite Element Program ANSYS. Flexibility functions are presented for a concrete slab track system. Furthermore the stress distribution in the subsoil is calculated and visualized. The time domain formulation is applied for demonstrating the basic phenomena of a moving load passing by with sub- and supercritical speed. Besides that, a nonlinear, tension-free condition of contact between the track and the subsoil is mentioned briefly

    A toolkit of mechanism and context independent widgets

    Get PDF
    Most human-computer interfaces are designed to run on a static platform (e.g. a workstation with a monitor) in a static environment (e.g. an office). However, with mobile devices becoming ubiquitous and capable of running applications similar to those found on static devices, it is no longer valid to design static interfaces. This paper describes a user-interface architecture which allows interactors to be flexible about the way they are presented. This flexibility is defined by the different input and output mechanisms used. An interactor may use different mechanisms depending upon their suitability in the current context, user preference and the resources available for presentation using that mechanism

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Vibro-Injection Pile Installation in Sand: Part I—Interpretation as Multi-material Flow

    Get PDF
    The installation of vibro-injection piles into saturated sand has a significant impact on the surrounding soil and neighboring buildings. It is generally characterized by a multi-material flow with large material deformations, non-stationary and new material interfaces, and by the interaction of the grain skeleton and the pore water. Part 1 in this series of papers is concerned with the mathematical and physical modeling of the multi-material flow associated with vibro-injection pile installation. This model is the backbone of a new multi-material arbitrary Lagrangian-Eulerian (MMALE) numerical method presented in Part 2.DFG, 76838227, Numerische Modellierung der Herstellung von Rüttelinjektionspfähle

    Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system

    Get PDF
    The present study was funded by were funded by the Biotechnology and Biological Sciences Research Council (BB/R008612/1, BB/S004343/1 to RH and RG; grant BB/R008973/1 to SM and CD) and the Institute Strategic Programme Grants (BBS/E/D/20002172, BBS/E/D/30002275 and BBS/E/D/10002070, to RH and RG). The funders had no roles in the study design, data collection and analysis, decision to publish or preparation of the manuscript.Peer reviewedPublisher PD

    Emerging issues and current trends in assistive technology use 2007-1010: practising, assisting and enabling learning for all

    Get PDF
    Following an earlier review in 2007, a further review of the academic literature relating to the uses of assistive technology (AT) by children and young people was completed, covering the period 2007-2011. As in the earlier review, a tripartite taxonomy: technology uses to train or practise, technology uses to assist learning and technology uses to enable learning, was used in order to structure the findings. The key markers for research in this field and during these three years were user involvement, AT on mobile mainstream devices, the visibility of AT, technology for interaction and collaboration, new and developing interfaces and inclusive design principles. The paper concludes by locating these developments within the broader framework of the Digital Divide
    corecore