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Vibro-Injection Pile Installation in Sand:
1. Interpretation as Multi-Material Flow
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Regensburg, Prüfeninger Straße 58, D-93049 Regensburg, Germany

Abstract. The installation of vibro-injection piles into saturated sand
has a significant impact on the surrounding soil and neighboring build-
ings. It is generally characterized by a multi-material flow with large
material deformations, non-stationary and new material interfaces, and
by the interaction of the grain skeleton and the pore water. Part 1 in
this series of papers is concerned with the mathematical and physical
modeling of the multi-material flow associated with vibro-injection pile
installation. This model is the backbone of a new multi-material arbitrary
Lagrangian-Eulerian (MMALE) numerical method presented in Part 2.

Keywords: multi-material flow, large deformations, mixture, soil me-
chanics, sand, averaging, homogenization, closure law, arbitrary Lagrang-
ian-Eulerian

1 Introduction

Vibro-injection piles, in German called “Rüttelinjektionspfähle (RI-Pfähle)”, are
used in sandy soil to tie back the base slab of deep excavations in urban area
with high groundwater level. They consist of an H-section steel pile equipped
with an injection tube and a welded-on collar located at the pile toe (Figs. 1
and 2). During the installation of the pile into the water-saturated sand by
vibration the soil loses its shear strength (“soil liquefaction”) and the annular
gap generated by the collar is continuously injected with grout. The installation
process of a vibro-injection pile interacts to a great extent with its neighborhood
[32, 34]. This is why the numerical modeling of the installation process is of high
practical relevance for the realistic prediction of the deformations and the load
bearing behavior of the wall.

Sufficiently realistic computational models must be able to reproduce the
basic installation phenomena (Fig. 2, detail A). These include the shearing and
liquefaction of the locally undrained saturated soil, the displacement of the liq-
uefied soil by the pile and the grout, as well as the mixing of the grout with the
liquefied soil. Stated more generally, the installation of vibro-injection piles can
be characterized by a multi-material flow with large material deformations, by
free surfaces and non-stationary contact interfaces, and by the complex coupled
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Fig. 1. Grid of vibro-injection piles to tie back an excavation base slab. Deep excavation
of about 20 m in urban area (left) and recovered pile (right).

behavior of the grain skeleton and the pore water. The numerical simulation of
such problems is very challenging. Even the penetration of the steel profile alone
could not be handled by using the classical Lagrangian formulations of the finite
element method (FEM) [47, 44]. It is no surprise, therefore, that up to date there
are no FE prediction models for the installation of RI-piles and for the related
time-histories of the stress and density states within the soil.

It is the aim of the Subproject 5 as part of the DFG Research Unit FOR 1136
to make a significant contribution to this area through the development of a
so-called multi-material arbitrary Lagrangian-Eulerian (MMALE) method. Ob-
jectives are, firstly, to predict both qualitatively and quantitatively the stress
and density time-histories within the soil in the vicinity of the vibro-injection
pile and hence the effects of its installation process on close-by structures and,
secondly, the realistic simulation of the load bearing and deformation behavior
of the completed pile. Based on a continuum mechanical description, especially
the single installation phenomena (driving of the steel profile by vibration, liq-
uefaction and displacement of the undrained soil during vibratory pile driving,
grouting of the emerging annular gap between the steel profile and the lique-
fied soil; see also Fig. 2) should be modeled by using an MMALE finite element
method.

MMALE methods fall into the category of arbitrary Lagrangian-Eulerian
methods [23, 35, 4, 2] and have no limitations concerning material deformations
and the evolution or generation of material interfaces. The mesh can move in-
dependently of the material such that material interfaces (boundaries) may flow
through the mesh. Elements cut by interfaces contain a mixture of two or more
materials and are referred to as multi-material elements. The mixture is treated
as an effective single-phase material or homogenized mixture on the element
level. Hence, quantities related to each material must be “mixed” in a certain
way to yield the corresponding homogenized element quantities. As the latter
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Fig. 2. Illustration of the installation of a vibro-injection pile in saturated sand to tie
back an excavation base slab. Detail A: phenomenology at the pile base, Detail B:
typical zone of the considered multi-material flow including macroscopic interfaces.
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should be based on physical principles, the development of an MMALE method
for vibro-injection pile installation in sand has to start with the mathematical
and physical modeling of the associated multi-material flow, which is the content
of Part 1 in this series of papers. Details of the new method and of our numerical
and experimental investigations concerning vibro-injection pile installation will
be presented in Part 2.

Part 1 is structured as follows. In Section 2 we introduce the three different
spatial scales (microscale, mesoscale, macroscale) of the continuum mechanical
problem and formulate the balance principles and jump conditions of the mi-
croscopic multi-material flow. This flow is homogenized in Section 3 to yield a
macroscopic multi-material flow forming the physical model of the numerical
method. One of the basic techniques to achieve this homogenization is spatial
averaging, a theory which is widely used in the field of multiphase flow and the
modeling of porous media. Section 4 then addresses the closure of the resulting
system of equations by making reasonable assumptions and establishing interfa-
cial transfer laws, constitutive laws, and topological laws. The final form of the
macroscopic model for multi-material flow is derived in Section 5 through model
reduction based on additional, a priori closure assumptions. The paper closes
with concluding remarks and outlook in Section 6.

2 Spatial Scales and Balance Principles

2.1 Three Spatial Scales

Consider the process of vibro-injection pile installation into sand as illustrated
in Fig. 2. Detail B of that figure can be regarded as a still image of a multi-
material flow recorded through a spatially fixed observation window. We take this
zone as characteristic of the multi-material (multi-constituent) flow and assume
that the basic features of the flow are independent of the specific arrangement
resp. distribution of the constituents. The characteristic zone is filled with an
immiscible mixture consisting of a bulk solid phase (steel), a bulk fluid phase
(grout), and a compound phase consisting of a solid species and a fluid species
which represents the fluid-saturated porous material (sand) —the term “species”
is used here to distinguish these constituents from the bulk solid and bulk fluid
phases. Void (empty space) is considered as a particular bulk fluid phase in
our model. Immiscibility of the mixture is characterized by the fact that the
constituents are separated by interfaces.

Three spatial scales are introduced in accordance with [6]; see Fig. 3. The
porous material is constituted by an assembly of sand grains, whose typical di-
ameter defines the microscale of the problem, lmicro. However, in the present
research we have to properly reproduce the nonlinear coupled mechanical be-
havior of the water-saturated sand. In this regard the best models currently
available are phenomenological two-phase models that rely on a continuum rep-
resentation of the soil and not on micromechanics. Therefore, we introduce the
characteristic length at which the saturated sand can be represented by a con-
tinuum as the mesoscale lmeso. A similar issue of upscaling, but on a larger scale,
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Fig. 3. Three spatial scales to model vibro-injection pile installation in saturated sand.
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has to be faced in multi-material elements of the MMALE method. Accordingly,
we postulate the existence of a representative volume element (RVE) at some
macroscale, lmacro, through which the immiscible mixture of mesoscale continua
(bulk solid, bulk fluid, and saturated sand) can be equivalently modeled as an
effective single-phase material (homogenized immiscible mixture) treated by the
MMALE method. The real world is modeled on an even larger scale; in the
literature this is sometimes called the megascale.

To make this point clear, we remark that our definitions of a constituent, a
phase, and a species is comparable to those generally used in chemistry and ther-
modynamics. Constituents are called the individual (chemically-independent)
materials composing the mixture on the microscale (constituent = micro-con-
tinuum). The heterogeneous mixture consists of different material phases sep-
arated by macroscopic interfaces. A phase is physically distinct and mechani-
cally separable and, in our case, might be identified with a constituent if there
would be no saturated porous medium in the mixture. However, we generally
define a phase to be a compound material consisting of solid species and a
fluid species, and which can be regarded homogeneous on a mesoscale (phase =
meso-continuum). Finally, as indicated by Fig. 3, on the postulated macroscale
the mixture of phases can be addressed as a homogeneous mixture (macro-
continuum).

2.2 Microscopic Balance Principles

On the microscale all constituents of the mixture can be regarded as micro-
continua (Fig. 3), governed by the equations of continuum mechanics [38, 39,
27, 28, 20, 1]. Generally these include conservation of mass

∂ρ

∂t
+ div(ρv) = 0 (1)

and balance of momentum

∂ρv

∂t
+ div(ρv ⊗ v) = ρb+ divσ , (2)

assumed to hold in a domain of interest V ⊂ S in the ambient Euclidian space
and time interval [0, T ] ⊂ R. In the equations, v denotes the material velocity
in the spatial description, ρ is the mass density, b is a prescribed body force
per unit mass (e.g. gravity), σ = σT is the symmetric Cauchy stress, div is the
spatial divergence operator, and ⊗ is the tensor product. The notation is found
at the end of this paper.

In the process of vibro-injection pile installation, the velocities are moderate
and thermal effects can be ignored, so that equations (1) and (2) alone serve as
the balance principles of that initial boundary value problem. At significantly
larger velocities, on the other hand, thermal and strain rate effects may constitute
an important part of the solution. In this case balance of energy must be added
to the set of governing equations.
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While the balance principles hold in the interior of each constituent, the jump
conditions for mass and momentum given by

Jρ(v − vI)K · n∗ = 0 and Jρv ⊗ (v − vI)− σK · n∗ = 0 , (3)

respectively, must hold at the interfaces; the jump conditions express the balance
principles at an interface. Here · denotes the single contraction of tensors and

JqK def
= q[l] − q[k] the jump of q across the interface between material l and

material k, with q[k] being the limit value of q on the k-side of the interface, vI
is the interface velocity, and n∗ is the field of normals on the interface pointing
outward of the k-th micro-continuum. In the jump condition for momentum,
(3)2, no surface tension is taken into account.

We remark that the balance principles (1) and (2) are in the so-called Eule-
rian conservation form, and that all equations in this section refer to a spatial
reference volume instantaneously occupied by the material on the microscale.
The quantities ρ(x, t), v(x, t), etc., represent microscopic (non-averaged) time-
dependent spatial fields, with x ∈ V and t ∈ [0, T ]. This means that a spatial
point is viewed as being currently occupied by a single constituent.

3 Macroscopic Multi-Material Flow

3.1 Fundamentals of Spatial Averaging

In our approach the effective multi-material dynamics on the macroscale is de-
rived from physical principles by making use of spatial averaging [42, 20, 26, 6].
Spatial averaging results in continuum mechanical equations which are similar to
those that can be derived using the continuum theory of mixtures and the theory
of porous media [38, 16, 22, 18]; see also Subproject 2 of this research unit. How-
ever, the advantage of the averaging approach is that information available at a
smaller scale is transferred to the larger scale with respect to which averaging is
carried out.

Let V ′ ⊂ V be a time-independent RVE having the characteristic length
lmacro, and q(x, t) be an arbitrary time-dependent spatial microscopic field for
all x ∈ V and t ∈ [0, T ]. Then, the volume average of q is defined through

〈q〉(x, t) def
=

1

V ′

∫
V′
q(x+ ξ, t) dv . (4)

Here dv is the volume form on S and V ′
def
=
∫
V′ dv is the volume measure of

V ′. Moreover, ξ = x′ − x and x′ ∈ V ′. By (4) and the definition of the RVE,
averaged quantities always refer to the macroscale.

A phase function (or indicator function) is defined by

P k(x, t)
def
=

{
1 if x is in phase k at time t,

0 else
(5)
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for all x ∈ V and t ∈ [0, T ], where k ∈ {1, . . . , nmat} and nmat being the number
of phases in the mixture. The phase function is a so-called generalized function
resp. distribution and picks out the generally time-dependent k-phase volume
Vk ⊂ V ′. By the definition of a volume average (4), then, the volume fraction of
the k-th phase with respect to V ′ is defined through

fk
def
= 〈P k〉 =

1

V ′

∫
V′
P k dv =

1

V ′

∫
Vk

dv =
V k

V ′
∈ [0, 1] , (6)

where V k
def
=
∫
Vk dv. Equation (6) is a natural, that is, derived definition of

volume fraction. By contrast, volume fraction is postulated in the continuum
theory of mixtures and the theory of porous media.

We now assume that all material phases of the considered mixture are com-
posed of a solid species (denoted by β = s) and a fluid species (denoted by
β = f). In fact the portion of one of these species in a particular phase might
be zero. For all x ∈ V and t ∈ [0, T ], we then define another indicator function
Sβ , called species function, which equals zero everywhere except on the spatial
region occupied by the β-species at time t, where it is equal to one. Concerning
the RVE, we denote this region by Vβ ⊂ V ′. Therefore, by the property of indi-
cator functions, the product P kSβ is the phase-species function picking out the
partial volume occupied by the β-species in the k-phase:

(P kSβ)(x, t) =

{
1 if x ∈ V is in species β of phase k at t ∈ [0, T ],

0 else.
(7)

The volume fraction of the β-species in the k-phase is then obtained from

πβk
def
=
〈P kSβ〉
fk

=
1

fkV ′

∫
V′
P kSβ dv =

1

V k

∫
Vβk

dv =
V βk

V k
∈ [0, 1] , (8)

where Vβk def
= Vk ∩ Vβ and V βk

def
=
∫
Vβk dv is the volume of the β-species in

the k-phase in the RVE. The macroscopic β-species fraction in the mixture is

πβ
def
=
∑
k f

kπβk, and∑
k

fk = 1 and
∑
β

πβk = 1 . (9)

As we are concerned with phases solely composed of a solid species and a
fluid species, we simply define the fluid fraction (or porosity) of the k-phase
through

nk
def
= πfk (10)

so that the solid fraction within the k-phase becomes πsk = 1 − nk by using
(9)2. If the k-phase consists of a solid without significant porosity (e.g. steel),
then nk = 0. If on the other hand the k-phase is a fluid, then nk = 1 applies.
Pure solid mixtures are characterized by nk = 0 and pure fluid mixtures by
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nk = 1 for all k ∈ {1, . . . , nmat}, that is, n
def
=
∑
k n

k = 0 or 1 respectively. The
mixture represented by a single fluid-saturated porous medium is characterized
by fk = 1 (nmat = 1) and 0 < nk < 1.

Spatial averaging of microscopic physical fields on the constituents is done
in a similar way as in (8) in conjunction with (4) and (6). For example, the
averaged mass density and velocity of the solid species in the k-phase are given
by

ρsk
def
=
〈P kSsρ〉
fk(1− nk)

and vsk
def
=

〈P kSsρv〉
fk(1− nk)ρsk

, (11)

indicating that vsk in fact is a mass-weighted volume average. While ρsk is the
intrinsic (or material) mass density, the bulk mass density of the k-phase solid
species with respect to the RVE is obtained from fk(1−nk)ρsk. The mass density
of the mixture, by the properties (9), can be computed from

〈ρ〉 =
∑
k

∑
β

fkπβkρβk =
∑
k

fkρk =
∑
k

fk
(
(1− nk)ρsk + nkρfk

)
, (12)

where ρk is the (intrinsic) mass density of the k-phase in the mixture. As an
example, consider a specimen of dry sand in which the pores are filled with gas
of negligible density such that ρfk ≈ 0 and nmat = 1. Then, ρsk = ρs represents
the grain mass density and (1 − n)ρs ≈ 〈ρ〉 is the bulk mass density, which is
approximately equal to the mass density 〈ρ〉 of the solid-gas mixture.

We emphasize that k, β, etc., are labels and not coordinate indices. No sum-
mation on repeated labels in a term is enforced unless the sigma notation is
employed.

Based on (11) and (12) the mean spatial velocity of the mixture is related to
the momentum and mass densities of the constituents by

〈v〉 =

∑
k

∑
β f

kπβkρβkvβk∑
k

∑
β f

kπβkρβk
=

∑
k f

kρkvk∑
k f

kρk
= 〈ρ〉−1

∑
k

fkρkvk , (13)

where

vk
def
=
〈P kρv〉
fkρk

=
∑
β

fkπβkρβk

fkρk
vβk =

1

ρk
(
(1− nk)ρskvsk + nkρfkvfk

)
(14)

is the mean spatial velocity of the k-phase. It should be pointed out here that
averaged quantities are defined for all x ∈ V and t ∈ [0, T ]. In other words, the
mixture after averaging is represented by a superposition of continuous bodies
with independent motions (i.e. overlapping and interpenetrating continua), as in
the continuum theory of mixtures according to [38].

Averaging of the stress field is not straightforward; see [6], or [26, ch. 2] for
the case where Sβ ≡ 1. For example, the averaged microscopic Cauchy stress
within the solid species of the k-phase is given by

σsk def
=
〈P kSsσ〉
fk(1− nk)

− 〈P
kSsρv̄sk ⊗ v̄sk〉
fk(1− nk)

, (15)
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in which v̄sk denotes the deviation of the microscopic velocity of the solid species
in the k-phase from its spatial average vsk. If, as in the case considered here, the
solid species of the k-phase is formed by a grain skeleton, then σsk represents
the microscopic Cauchy stress within the grains averaged with respect to the
RVE. The second term on the right hand side of (15) is a residual stress, called
Reynolds stress, due to mass flux relative to the averaging volume. The averaged
stress in the grain skeleton, σsk, should not be confused with Terzaghi’s effective
stress whose proper definition is given below.

Our three-scale approach to obtain the macroscopic fields differs significantly
from that in [6]. Consider a representative volume element V ′′ smaller than V ′
for each phase k having the characteristic length lmeso at which the mixture of
the two species β ∈ {s, f} in the k-phase can be represented by a continuum.
Then, spatial averaging over V ′ after averaging over V ′′ will result in the same
averaged (i.e. macroscopic) physical field as spatial averaging over V ′ alone.
Therefore, we do not introduce a separate operator for averaging over V ′′, as
done in [6], so that stressing the term “mesoscale” is somewhat superfluous;
the averaged equations of a binary mixture are obtained from those presented
herein simply by setting P k ≡ 1 (resp. fk ≡ 1). In our approach we use only one
macroscopic averaging operator in conjunction with a composition of indicator
functions, called the phase-species function, which picks out a particular species
in a particular phase. A detailed comparison our approach and that in [6] is left
to future work.

3.2 Macroscopic Balance Principles for Each Species

By using spatially averaged fields and taking into account basic averaging the-
orems, the macroscopic (averaged) balance principles for each species in the
mixture can be derived. In particular, conservation of mass and balance of mo-
mentum of the β-th species of the k-th phase with respect to the whole mixture
in the representative volume element read

∂fkπβkρβk

∂t
+ div(fkπβkρβkvβk) = Πβk

∂fkπβkρβkvβk

∂t
+div(fkπβkρβkvβk ⊗ vβk) =fkπβkρβkbβk+div(fkπβkσβk)

+Πβkv̄βkI +Γ βk

(16)
in which β ∈ {s, f}, k ∈ {1, . . . , nmat}, and

Πβk def
=
〈
δβkI ρ[βk](v − vI)[βk] · nβk∗

〉
,

Πβkv̄βkI
def
=
〈
δβkI ρ[βk]v[βk] ⊗ (v − vI)[βk] · nβk∗

〉
,

and Γ βk
def
= −〈δβkI σ

[βk] · nβk∗〉 .

(17)

〈·〉 is the spatial average as defined by (4), δβkI is a Dirac delta function which
picks out the interface of the β-th species of the k-th phase, and nβk∗ is the field
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of outward normals on that interface. Moreover, for the microscopic field q, q[βk]

is the restriction to the side of the interface lying in the β-species of the k-phase.
The terms Πβk, Πβkv̄βkI , and Γ βk are due to the interaction between the

species and phases and can be interpreted as follows. Πβk describes the (average)
mass transfer onto the β-species of the k-phase by all other constituents of the
mixture through chemical reactions or erosion, for example. The momentum
transfer term Γ βk includes drag force densities per unit volume generated by
the relative motion of the constituents. It accounts for surface forces, but not
for momentum exchange owing to transfer of inertial mass (i.e. diffusion) which

is described by the term Πβkv̄βkI . Concerning locally drained fluid-saturated
porous media a specific constitutive equation for Γ βk will result in Darcy’s law
for the fluid flow. Further details about the derivation of (16) will be given in a
future paper [3].

3.3 Mixture Balance Principles

Summation of conservation of mass (16)1 and balance of momentum (16)2 over
all species and phases in consideration of (9) yields the corresponding macro-
scopic balance principles of the homogenized mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0

∂〈ρv〉
∂t

+ div〈ρv ⊗ v〉 = 〈ρb〉+ div〈σ〉 .
(18)

Here we have used the fact that the sum of the transfer terms over all constituents
vanishes, that is,∑

k

∑
β

Πβk = 0 and
∑
k

∑
β

(
Πβkv̄βkI + Γ βk

)
= 0 (19)

in accordance with the microscopic jump conditions (3). Only averaged quanti-
ties will be considered in the remainder of this paper.

It proofs convenient to display the balance principles derived so far in a
different form. Note that each of (16) and (18) provides the so-called Eulerian
conservation form of the balance principle with respect to fixed spatial points.
An equivalent representation more common in solid mechanics is the (updated)
Lagrangian form referring to the current configuration of the mixture in the
ambient space. Conservation of mass and balance of momentum of the mixture
then read

〈ρ̇〉+ 〈ρ〉div〈v〉 = 0 and 〈ρv̇〉 = 〈ρb〉+ div〈σ〉 , (20)

respectively. Here 〈q̇〉, in which q is an arbitrary time-dependent spatial field, is
used as an abbreviation for

〈q̇〉 def=
∑
k

∑
β

fkπβk q̇βk =
∑
k

fk
(
(1− nk)q̇sk + nkq̇fk

)
, (21)
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where

q̇βk
def
=

∂qβk

∂t
+ vβk ·∇qβk (22)

denotes the material time derivative of a β-species-k-phase-related quantity fol-
lowing the individual motion with velocity vβk. The term 〈ρ〉div〈v〉 in (21)1 is
defined as the difference between (18)1 and 〈ρ̇〉. We note that (20)2 is equivalent
to (18)2 if and only if conservation of mass (20)1 resp. (18)1 is satisfied. We also
remark that (22) is generally different form the material time derivative of a
k-phase-related quantity qk along the k-phase mean velocity, which is denoted
by

q̀k
def
=

∂qk

∂t
+ vk ·∇qk . (23)

4 Closure of the Model

The two equations (18) in conjunction with (19), (16), and (17) are the bal-
ance principles governing the flow of a mixture of multiple materials with sev-
eral species, by including the flow of a single-phase material as a special case.
Modeling the specific multi-material flow associated with vibro-injection pile in-
stallation, however, requires closure of this set of equations, which is otherwise
underdetermined. Generally the following closure laws (or closure models) have
to be specified [14, 15]:

1. Transfer laws expressing the physics at the material interfaces.
2. Constitutive laws characterizing the physical behavior of each material.
3. Topological laws accounting for the evolution of variables characterizing the

interfacial structure.

Restrictions on the form of the closure laws result from the principles of
constitutive theory (e.g. objectivity) and from the fact that a material phase
containing fractions of both a solid species and a fluid species must represent a
fluid-saturated porous medium.

4.1 Interfacial Transfer Closure Laws

With regard to the transfer laws for the mixture it is assumed that no momentum
transfer occurs, i.e. Γ βk = 0 for all β ∈ {s, f} and k ∈ {1, . . . , nmat}, resulting in
uncoupled constituents at this stage of the derivation. Microscopic or molecular
shear resistance within a constituent (e.g. grain contact forces, fluid viscosity) has
to be modeled by the associated constitutive equation. Furthermore, any mass
transfer, no matter between which constituents, phases, or species of the mixture,
remains unconsidered such that Πβk = 0 for all β ∈ {s, f} and k ∈ {1, . . . , nmat}.
That is to say, constituents do not chemically react, no diffusion and dispersion
occurs, and interfaces are impermeable. As a result the injection of grout into the
pore space of the soil is not described by the model and fluid-saturated porous
media in the mixture are regarded locally undrained; the drained case including
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consolidation effects will be considered in future research. We are aware that this
is a drastic simplification, but is deemed necessary concerning the development
from scratch of the new MMALE method outlined in Part 2.

Notwithstanding this, inflow and outflow of the homogenized mixture across
non-Lagrangian boundaries of the computational domain is generally allowed.
Moreover, no limitations whatsoever exist with regard to the miscibility of the
water-saturated soil with grout material on the macro level, in which the material
phases maintain their original properties. The underlying averaged description
of the multi-material flow likewise captures separated mixtures (analogy: oil on
water) as well as disperse mixtures (analogy: emulsion of oil and water).

4.2 Constitutive Closure Laws

The constitutive closure laws summarized next characterize the mechanical be-
havior of the material phases during vibro-injection pile installation (cf. Fig. 2,
detail B), namely of the bulk solid phase, the bulk fluid phase, and the phase
forming a fluid-saturated porous medium (sand). The objective is to determine
for each phase k the Cauchy stress given by

σk =
∑
β

πβkσβk = (1− nk)σsk + nkσfk , (24)

with the fluid fraction being either πfk = nk = 0 (bulk solid, σk = σsk), nk = 1
(bulk fluid, σk = σfk), or 0 < nk < 1 (fluid-saturated porous medium). In order
to treat the mechanics of all materials of the problem (cf. Fig. 2, detail B) in
a unified fashion, we recall from [39, 27] that the Cauchy stress tensor of any
material can be decomposed into a pressure stress −pβkI and an extra stress sβk,

but also into a spherical part and the stress deviator σβkdev
def
= σβk − 1

3 (trσβk)I
according to

σβk = −pβkI + sβk = −p̄βkI + σβkdev , (25)

where I is the second-order unit tensor and p̄βk
def
= − 1

3 trσβk is referred to as

the (negative) mean stress. Generally one has pβk 6= p̄βk unless sβk = σβkdev
resp. tr sβk = 0, which is usually assumed for pure solids. Fluids may possess
a non-deviatoric sβk through volume viscosity but this is not considered here;
cf. (27)2.

The decomposition of stress (25) is useful to model both compressible and
nearly incompressibile materials. We then assume for phases composed of a single
species (i.e. πβk ≡ 1), like bulk fluid or bulk solid, that there is a compression
model of the form

− 1

V βk
∂V βk

∂pβk

∣∣∣∣
Mβk

=
1

ρβk
dρβk

dpβk
def
=

1

Kβk
resp. ṗβk

def
=

Kβk

ρβk
ρ̇βk (26)

for each constituent, relating the rate of pressure to the rate of mass density

through a finite bulk modulus Kβk. In (26), V βk and Mβk def
= ρβkV βk are the
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volume and intrinsic mass of the β-species in the k-phase in the RVE, respec-
tively, and |Mβk means that mass is kept constant along with differentiation.

First, let us consider the bulk solid and bulk fluid phases, whose behavior
is assumed to be the same at all length scales defined (micro, meso, or macro).
The following constitutive assumptions are made. Effects of turbulence in the
bulk fluid are currently neglected. Bulk solid is either rigid or hypoelasto-plastic,
and bulk fluid is a Newtonian fluid with deviatoric viscous stress. The latter two
assumptions can be formalized as

O
σsk def

= csk(σsk,hsk) : dsk

σfk def
= −pfkI + c fk : dfk with tr(c fk :dfk) = 0 ,

(27)

respectively, where h
def
= {h1, . . . , hm} is a set of material state variables,

O
σ

def
=

σ̇ + σ · ω − ω · σ denotes the Zaremba-Jaumann rate of the considered second

order tensor, ω
def
= 1

2 (∇v − (∇v)T) is the vorticity tensor, d
def
= 1

2 (∇v + (∇v)T)
is the spatial rate of deformation tensor, tr(·) returns the trace of a second-order
tensor, and : indicates double contraction. The bulk fluid phase representing
macroscopic void zones (e.g. ambient atmosphere) is modeled by

σfk def
= −pfkI , with ṗfk = −Kfk divdfk and Kfk ≈ 0 , ρfk ≈ 0 . (28)

The application of (25) in conjunction with (26) to a rate constitutive equa-
tion of the form (27)1 generally results in

O
ssk =

O
σsk
dev

def
= csk(σsk,hsk) : dskdev and ṗsk

def
=

ρ̇sk

3ρsk
I : csk : I . (29)

Clearly, the rate of the extra stress (rate of stress deviator) in the bulk solid can
be calculated from the usual rate constitutive equation by using the deviatoric
rate of deformation, and the corresponding bulk modulus can be calculated from
the material tangent tensor as 3Ksk = I :csk :I.

It should be noted that in a mixture of materials the material time deriva-
tive and the velocity v entering the previous relations are those related to the
macroscopic motion of the actual constituent, in accordance with (22). We also
remark that compressive stress is taken with negative sign, but pressure has posi-
tive sign whenever stress is compressive. This corresponds to the sign convention
of general mechanics.

Two different approaches can be employed to model the mechanical behav-
ior of sand, or porous media in general, on the mesoscale. The first approach
describes the behavior on the microscale of grain size and then applies spatial
averaging to obtain the behavior on the mesoscale [43]. In the second approach,
which is followed here, each species is regarded as a continuum at the mesoscale
defined over all space. Concerning fluid-saturated porous media in the mixture,
we first notice that vfk = vsk = vk due to the locally undrained conditions

assumed. The pore fluid is taken ideal (non-viscous) such that σfk def
= −pfkI,
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in contrast to (27)2. As a consequence, the solid species velocity and pore fluid
pressure are the only degrees of freedom of the undrained fluid-saturated porous
medium.

Terzaghi’s principle of effective stress [45, 46] is introduced as

σk
′

= σk + pfkI , (30)

where σk
′

is Terzaghi’s effective stress and σk is the total Cauchy stress acting on
the saturated porous medium representing the k-phase. Using (30) in conjunction

with (25), the k-phase mean effective stress pk
′ def

= − 1
3 trσk

′
can be obtained

from

pk
′

= (1− nk)(psk − pfk) = pk − pfk , so that ṗk
′

= ṗk − ṗfk . (31)

Hence, the mean effective stress divided by the solid fraction equals the averaged
excess pressure in the solid species, that is, pk

′
/(1−nk) = psk−pfk; in a suspen-

sion each sand grain is completely surrounded by water such that psk = pfk and
pk

′
= 0. The second equation in (31) is the rate form of the first equation. The

superposed dot indicates the material time derivative along the velocity vsk of
the solid species in the k-phase (which equals the velocity of the fluid species at
locally undrained conditions, see above).

The solid and fluid species of a fluid-saturated porous medium are generally
compressible. This particularly means that the density of both the water and the
grain material of water-saturated sand can change due to pressure loading. The
mass density of the pore fluid can be considered as a function of the pore fluid
pressure alone, that is, ρfk = ρ̃fk(pfk) such that (26) holds. The compressibility
resp. the bulk modulus of pore water generally depends not only on pressure
and temperature, but also on the gas content indicating partial saturation. A
small air content reduces the bulk modulus of an air-water mixture considerably,
hence should be considered in the calculation of the pore fluid pressure. In the
present research we use the relation [25]

Kfk =

(
Sk

Kfk
0

+
1− Sk

pfk

)−1
, (32)

where Kfk is the bulk modulus of an air-water mixture, Sk is the degree of
water saturation, Kfk

0 is the bulk modulus of pure water (Sk = 1.0; Kfk
0 =

4.78× 10−10 Pa−1 under atmospheric pressure at 10 ◦C), und pfk is the absolute
fluid pressure.

As opposed to the pore fluid the mass density of the solid species (grain
material) in saturated porous media not only depends on the pressure but also
on the porosity [21, 7, 8, 9]:

ρsk = ρ̃sk(psk, nk) , or, equivalently, psk = p̃sk(ρsk, nk) . (33)

Therefore, the total change in pressure within the solid species in the k-phase,

dpsk =
∂psk

∂ρsk

∣∣∣∣
nk

dρsk +
∂psk

∂nk

∣∣∣∣
ρsk

dnk , (34)
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consists of a pressure change due to compression of the grains leaving the porosity
unchanged and a pressure change due to rearrangement of the grains (config-
urational compression) at constant mass density of the grain material. In the
partial derivatives the superposed ˜ is omitted for notational brevity.

Because the porosity is not directly measurable, we choose a different set of
independent variables in (33) which can be combined to back out the original
variables. In consideration of (31), we replace in (33)1 the set of independent
variables (psk, nk) by the equivalent set (pk

′
, pfk), so that ρsk = ρ̃sk(pk

′
, pfk) =

ρ̃sk(pk − pfk, pfk). Then, the total change of volume of the k-phase solid species
can be calculated from

− dV sk

V sk

∣∣∣∣
Msk

=
dpsk

Ksk
=

dρsk

ρsk
=

1

ρsk
∂ρsk

∂(pk − pfk)

∣∣∣∣
pfk

dpk
′
+

1

ρsk
∂ρsk

∂pfk

∣∣∣∣
pk′

dpfk

=
1

ρsk
∂ρsk

∂pk

∣∣∣∣
pfk

dpk
′
+

1

ρsk
∂ρsk

∂pfk

∣∣∣∣
pk′

dpfk =
dpk

′

Kk
d

+
dpfk

Kk
uj

.

(35)
Ksk is the material bulk modulus of the solid species, which is assumed to
be a function of the mass density ρsk alone so that (26) applies. Note that in
general, the solid species bulk modulus is also a function of the porosity. The
bulk moduli Kk

d and Kk
uj have likewise been introduced in accordance with (26)

and are referred to as the drained bulk modulus and unjacketed bulk modulus of
the k-phase porous medium, respectively [8]. Kk

uj is approximately equal to Ksk

under the assumption that the solid species volume changes only little during
an unjacketed test. Kk

d is the bulk modulus of the drained porous medium as
measured in a jacketed test.

By replacing in (35) the total differential with the material time derivative
along the velocity vsk, and noting that V̇ sk/V sk|Msk = div vsk, one obtains

ṗk
′

= −Kk
d

(
div vsk +

ṗfk

Kk
uj

)
= ṗk

′′
− Kk

d

Kk
uj

ṗfk . (36)

where ṗk
′′ def

= −Kk
d div vsk. Using (31)2 and Kk

uj ≈ Ksk one arrives at

ṗk = ṗk
′′

+ αkṗfk , where αk
def
= 1− Kk

d

Ksk
. (37)

The coefficient αk is due to [12, 13] and accounts for the compressibility of the
solid material forming the porous medium. A common approximation for sand
is αk = 1, meaning that the grain material is incompressible. A suspension of
sand and water is characterized by Kk

d = 0, leading to αk = 1 likewise. From
(36) together with ṗsk/Ksk = −div vsk we also have

ṗsk = ṗk
′Ksk

Kk
d

+ ṗfk . (38)

We now turn to the mechanical behavior of sand under general deformations.
In the present work, sand is modeled as a hypoplastic porous medium, in accor-
dance with Subproject 1 of the DFG Research Unit FOR 1136. A widely-used
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hypoplastic model for sand neglecting viscous effects is due to [41] and has been
extended by [33]. Its general form,

O
σk

′ def
= ck

′
(σk

′
,hk

′
) : (dsk − ε̇svolI)

def
=

O
σk

′′
− ε̇svolck :I , (39)

provides a spatial rate constitutive equation for the effective Cauchy stress, but
here we subtracted from dsk the average volumetric strain rate ε̇svolI of the solid
grains under the assumption of a compressible solid species. The stress tensor
σk

′′
whose Zaremba-Jaumann rate is defined in (39) is responsible for all defor-

mation of the solid species in the k-phase. The particular form of ck′(σk′ ,hk′)
can be found in the references and is assumed to be valid for dry, fully-saturated
drained, and locally undrained sand. Moreover, we postulate ck′(σk′ ,hk′) ≡
ck′′(σk′′ ,hk′′) because in soil mechanics the grain material is usually taken in-
compressible.

A basic property of the Zaremba-Jaumann rate is tr
O
σ = I :

O
σ = I : σ̇ [5,

p. 139], so that the trace of (39) yields

ṗk
′

= ṗk
′′

+
ε̇svol
3
I :ck :I , (40)

where ṗk
′′ def

= − 1
3 tr σ̇k

′′
= − 1

3 tr(ck : dsk). Comparison with (36) shows that

ε̇svol =
ṗfk

Kk
uj

≈ ṗfk

Ksk
and Kk

d =
I :ck :I

3
. (41)

Here ck is the hypoplastic material tangent of (39), but it can be any other
material tangent representing generally non-isotropic porous media.

In (39) the generally unsymmetric tensor ck : I is replaced with its average
Kk

dI derived from (41)2 [45]. Then, by taking the Zaremba-Jaumann rate of
(30),

O
σk =

O
σk

′′
− αkṗfkI . (42)

Integrating this equation by starting from a zero initial state (σk
′′ |t=0 = 0 and

pfk|t=0 = 0) yields the modified principle of effective stress [12, 45, 46]

σk
′′

= σk + αkpfkI . (43)

We will use this principle instead of (30) in what follows despite the fact that,
strictly speaking, (43) in contrast to (30) holds only if the porous medium is
characterized by linear isotropic behavior. However, for sand the coefficient αk

is indeed very close to unity.
Based on (25) and (43), it can be shown that the effective stress is related

to the pressures and stresses in the constituents of the saturated porous media
through

σk
′′

= (1− nk)σsk + (αk − nk)pfkI

= −((1− nk)psk − (αk − nk)pfk)I + (1− nk)ssk ,
(44)



18 Aubram et al.

with ssk = σsk
dev = σk

′′

dev/(1− n) = sk
′′
/(1− n) = sk/(1− n), and

O
sk

′′
=

O
σk

′′

dev = ck(σk
′′
,hk

′′
) : dskdev (45)

by (39). Since locally undrained conditions have been assumed, the rate of pore
fluid pressure can be determined from the deformation of the porous medium as
[45, 46]

ṗfk = −αkQk div vsk , with
1

Qk
def
=

αk − nk

Ksk
+

nk

Kfk
, (46)

This relation can be derived using conservation of mass for each species. There-
fore,

ṗk = −Kk div vsk (47)

by (37), in which

Kk = Kk
d

(
1 +

(αk)2

αkKk
d/K

sk + nk
(
Kk

d/K
fk −Kk

d/K
sk
)) (48)

represents, in the most general case, the bulk modulus of an undrained saturated
porous material with compressible constituents [19]. The remaining cases are:

– Bulk solid phase (nk = 0, Kk
d = Ksk, αk = 0), for which Kk = Ksk.

– Bulk fluid phase (nk = 1, Kk
d = 0, αk = 1), for which Kk = Kfk.

– Dry porous medium (0 < nk < 1, Kfk ≈ 0), for which Kk = Kk
d .

– Suspension of sand and water (Kk
d = 0, αk = 1), for which psk = pfk and

Kk =
(
(1− nk)/Ksk + nk/Kfk

)−1
.

In concluding this section, we remark that the velocity vk and pressure pk of
each phase k represent its degrees of freedom (primary unknowns). Each phase
can be a solid, a fluid, or a fluid-saturated porous medium depending on the fluid
fraction nk assigned at the outset. Accordingly, the developed model is able to
describe the flow and large deformation of mixtures of solids, fluids, and porous
media in a unified fashion.

4.3 Topological Closure Laws

The application of spatial averaging to multi-material flows entails a loss of
information as it smoothes out details of the flow structure, like the geometry of
the material interfaces [14, 15]. The topological closure laws should restore the
lost information. Because the flow structure results from quantities related to the
problem as a whole and not from intrinsic material properties alone, topological
closure laws are not closure laws in a strict sense. Concerning the multi-material
flow associated with vibro-injection pile installation and the assumptions and
restrictions made so far, the only topological laws required are those that account
for the evolution of the k-phase volume fraction fk and fluid fraction nk. To show
this, we analyze the governing equations (16) subject to the constraints (9).
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The external loads bsk and bfk are assumed to be given, and the unknowns
for each phase k are the mass densities ρsk and ρfk, the velocities vsk and vfk, the
stresses σsk and σfk, the volume fraction fk, the fractions of the solid and fluid
species πsk and πfk, respectively, the mass transfer terms Πsk and Π fk, as well as
the momentum transfer terms Γ sk and Γ fk. Mass and momentum transfer was
assumed zero, and the constraint (9)2 yields πsk = 1 − πfk = 1 − nk. Since the
stress tensors are symmetric one is left with a total of 22nmat unknowns in three-
dimensional space: 2nmat mass densities (resp. pressures, by (26)), 6nmat velocity
components, 12nmat stress components, nmat volume fractions, and nmat fluid
fractions (porosities). These unknowns are accompanied by the 2nmat equations
of conservation of mass and 6nmat equations of balance of momentum for both
species in all material phases, and by the constraint (9)1. The balance principles
of the mixture (18) do not provide additional information, but for the 12nmat

stress components of σsk and σfk, respectively of combinations of these, the
constitutive equations of the previous section are substituted. Therefore, the
number of unknowns is finally reduced to 2nmat − 1, namely nmat − 1 volume
fractions and nmat porosities.

The basic equations to tackle this problem of closure are the constraints (9)
as well as the mass conservation equation of the β-species of the k-phase (16)1,
with β ∈ {s, f} and k ∈ {1, . . . , nmat}, under the assumption of zero mass transfer
between the constituents. First, we notice that time derivation of the constraints
(9) and the application of a basic averaging rule [20] results in

∑
k

∂fk

∂t
= 0 and

∑
β

∂πβk

∂t
= 0 . (49)

The second condition is automatically satisfied since πsk = 1 − πfk. Moreover,
due to the fact that vfk = vsk = vk under the assumption of locally undrained
conditions the nmat unknown porosities can be determined. This is done by
expanding (16)1 for the case where nmat = 1, so that fk = 1:

∂πβkρβk

∂t
+ div(πβkρβkvβk) = ρβkπ̇βk + πβkρ̇βk + πβkρβk div vβk = 0 . (50)

Hence, the porosity πfk = nk is updated by

ṅk = (1− nk)

(
ρ̇sk

ρsk
+ div vsk

)
= (1− nk)

(
ṗsk

Ksk
+ div vsk

)
. (51)
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Next, we consider (16)1 for arbitrary nmat > 1 but we take the sum over all
species in consideration of (9)2:

0 =
∑
β

∂fkπβkρβk

∂t
+
∑
β

div(fkπβkρβkvβk)

=
∂

∂t

∑
β

fkπβkρβk + div
∑
β

fkπβkρβkvβk =
∂fkρk

∂t
+ div(fkρkvk)

= ρk
(
∂fk

∂t
+ dfk · vk

)
+ fk

(
∂ρk

∂t
+ div(ρkvk)

)
= ρkf̀k + fkρ̀k + fkρk div vk ,

(52)

where d(·) returns the differential (or gradient) of a scalar-valued function. That
is,

f̀k = −fk
(
ρ̀k

ρk
+ div vk

)
. (53)

The equality of the first and second lines in (52) can again be shown by basic
averaging rules [20], and the material time derivative q̀k of a k-phase-related
quantity qk has been defined through (23).

It is crucial to note that (53) neither yields additional information nor defines
a topological closure law for the volume fraction. Equation (53) is just a rear-
ranged form of conservation of mass with regard to the k-phase of the mixture.
A proper closure law for volume fraction instead has to account for the physics
of the problem and particularly has to specify how the volumetric distribution of
the bulk solid, the bulk fluid, and the saturated porous medium evolves during
vibro-injection pile installation. Further research is needed to establish such a
topological closure law.

4.4 Resulting Model for Multi-Material Flow

The derivations presented so far result in a macroscopic model for the mechan-
ics of the multi-material flow associated with vibro-injection pile installation in
saturated sand:

div〈s− pI〉+ 〈ρb〉 − 〈ρv̇〉 = 0〈
ṗ

K

〉
+ div〈v〉 = 0 ,

(54)
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where

〈s〉 =
∑
k

fksk =
∑
k

fk
(
(1− nk)ssk + nksfk

)
=
∑
k

fksk
′′
,

〈p〉 =
∑
k

fkpk =
∑
k

fk
(
(1− nk)psk + nkpfk

)
=
∑
k

fk
(
pk

′′
+αkpfk

)
,

〈ρ〉 =
∑
k

fkρk =
∑
k

fk
(
(1− nk)ρsk + nkρfk

)
, 〈ρv̇〉 =

∑
k

fkρkv̀k ,〈
ṗ

K

〉
=
∑
k

fk

Kk
p̀k , div〈v〉 =

∑
k

(
f̀k + fk div vk

)
,

Kk = Kk
d

(
1 +

(αk)2

αkKk
d/K

sk + nk
(
Kk

d/K
fk −Kk

d/K
sk
)) , αk = 1− Kk

d

Ksk
.

(55)
This model, in conjunction with (19), (16), and (17), is closed by the constitutive
equations for the bulk solid, bulk fluid, porous medium, pore fluid, and void, and
by the evolution equations (topological closure laws) for the porosities nk and
volume fractions fk. The necessary topological closure laws for the nmat−1 vol-
ume fractions are yet unspecified. It will be shown in the next section, however,
that a priori closure respecting the assumptions underlying the applicability of
an MMALE method give rise to proper relations.

5 Two-Equation Reduced Model

5.1 A Priori Closure (Subcell Model)

In addition to the closure laws related to the continuous problem addressed in
Sect. 4, the application of an MMALE numerical method calls for a special clo-
sure model for multi-material elements, referred to as the subcell model, in order
to render the discretized problem well-posed [10, 11, 17, 29, 36, 30]. This subcell
model solves the problem of relating the evolution of the individual materials in
multi-material elements to the macroscopic degrees of freedom of the element. In
developing the subcell model we keep things as simple as possible and a priori
assume homogeneous distributions of pressure and velocity in the mixture at
each instant of time:

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {1, . . . , nmat} and t ∈ [0, T ] . (56)

A direct consequence of these two assumptions is that each element also has a
single deviatoric strain rate, that is, dkdev = 〈ddev〉 for all k ∈ {1, . . . , nmat}.

From a physical viewpoint, (56) means that everything is in homogeneous
thermodynamic equilibrium [37, 17, 29]. The assumption of pressure equilib-
rium is reasonable because pressure is continuous across a material interface.
Pressure disequilibration is associated with highly-dynamic compaction or other
processes not considered here. If (56)1 holds, then the adjustment of volume
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fractions and the transfer of pressure and pressure changes is infinitely fast. The
requirement that each element has a single velocity, on the other hand, is not
appropriate because equilibration of velocity differences is driven by drag forces
on material interfaces (momentum transfer). Assumption (56)2 results in fully-
bonded material phases without a contact mechanism. However, it is commonly
accepted because tangential contact with or without friction is difficult to model
in MMALE and multi-material Eulerian methods [40]. As a consequence, shear
resistance is accounted for only by the constitutive equation inside of the phases
next to the interface.

Based on the assumptions (56), the continuum mechanical two-equation
model summarized in Sect. 4.4 can now be reduced; see also [17, 29]. In par-
ticular, (53) under the assumption (56)2 becomes

ḟk + fk div〈v〉 = − ρ̇
k

ρk
= −fk ṗ

k

Kk
, (57)

in which the superposed dot now represents the material time derivative of any
spatial field q along the mean velocity 〈v〉 of the mixture:

q̇
def
=

∂q

∂t
+ 〈v〉 ·∇q . (58)

The assumption (56)1 yields〈
ṗ

K

〉
=
∑
k

fkṗk

Kk
=
〈ṗ〉
〈K〉

, with
1

〈K〉
=
∑
k

fk

Kk
. (59)

Moreover,
Kk

ρk
ρ̇k = ṗk = 〈ṗ〉 =

〈
K

ρ
ρ̇

〉
= 〈K〉

〈
ρ̇

ρ

〉
, (60)

so that (57) in conjunction with conservation of mass of the mixture, 〈ρ̇〉 +
〈ρ〉div〈v〉 = 0 , results in the self-consistent balance equation

ḟk + fk div〈v〉 = −fk 〈K〉
Kk

〈
ρ̇

ρ

〉
= fk

〈K〉
Kk

div〈v〉 , (61)

that is,

ḟk = fk
(
〈K〉
Kk
− 1

)
div〈v〉 . (62)

This is the remaining topological closure law for the volume fraction. Note that
it naturally provides for a void collapse mechanism because the material with
the smallest bulk modulus contributes most to the total volume change. This
feature is of particular importance in cases where the compressibilities of the
materials phases are widely different, as for example in a mixture of void and
steel.

Because of (60) and the basic constraint
∑
k f

k = 1, summation of (62) over
the nmat phases in the mixture results in (59). Therefore, the topological closure
law also satisfies the constraint

∑
k ḟ

k = 0.
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5.2 Application to the Developed Model

The macroscopic model for the multi-material flow associated with vibro-injec-
tion pile installation summarized in Sect. 4.4 and the subcell model developed in
the previous section result in following two-equation (two-field) reduced model:

div〈s− pI〉+ 〈ρb〉 − 〈ρ〉〈v̇〉 = 0

〈ṗ〉/〈K〉+ div〈v〉 = 0 ,
(63)

where

〈s〉 =
∑
k

fksk =
∑
k

fk
(
(1− nk)ssk + nksfk

)
=
∑
k

fksk
′′
,

〈p〉 =
∑
k

fkpk =
∑
k

fk
(
(1− nk)psk + nkpfk

)
=
∑
k

fk
(
pk

′′
+αkpfk

)
,

〈ρ〉 =
∑
k

fkρk =
∑
k

fk
(
(1− nk)ρsk + nkρfk

)
,

〈K〉−1 =
∑
k

fk/Kk , αk = 1−Kk
d/K

sk ,

and Kk = Kk
d

(
1 +

(αk)2

αkKk
d/K

sk + nk
(
Kk

d/K
fk −Kk

d/K
sk
)) .

(64)

The model is closed by the general constitutive equations for the

bulk solid:
O
σsk = csk(σsk,hsk) : 〈d〉 ,

bulk fluid: σfk = −pfkI + c fk : 〈d〉 subject to

tr(c fk : 〈d〉) = 0 and ṗfk = −Kfk div〈d〉 ,

porous medium:
O
σk

′′
= ck

′′
(σk

′′
,hk

′′
) : 〈d〉 ,

pore fluid: σfk = −pfkI subject to

ṗfk = −αkQk div〈d〉 and
1

Qk
=
αk − nk

Ksk
+
nk

Kfk
,

void: σfk = −pfkI subject to

ṗfk = −Kfk div〈d〉 and Kfk ≈ 0 , ρfk ≈ 0 ,


(65)

and by the evolution equations for the porosities,

ṅk = (1− nk)

(
ṗsk

Ksk
+ div〈v〉

)
, where ṗsk = ṗk

′Ksk

Kk
d

+ ṗfk , (66)

and volume fractions,

ḟk = fk
(
〈K〉
Kk
− 1

)
div〈v〉 . (67)
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Finally, the mass density of the mixture is updated by 〈ρ̇〉 =
∑
k f

kρ̇k using the
k-phase compression model

ρ̇k =
ρk

Kk
〈ṗ〉 . (68)

We remark that the reduced model might be derived by an asymptotic anal-
ysis of the unreduced model in the limit of zero relaxation (equilibration) times
instead of using a priori closure through (56) [24, 31].

6 Conclusions and Outlook

We have derived a continuum mechanical model to describe the multi-material
flow associated with vibro-injection pile installation in saturated sand. The
model has been derived from microscopic balance principles through spatial av-
eraging and treats the mixture of multiple materials as an effective single-phase
material or homogenized mixture on the macroscale. In doing so, we have as-
sumed that each phase of the mixture is composed of a solid species and a fluid
species, with the portion of the fluid being zero in a pure solid phase (bulk solid)
and the portion of the solid being zero in a pure fluid phase (bulk fluid). In
general, each phase represents a solid-fluid compound in which the solid species
is constituted of grains of a granular material; sand in the present case. The
solid-fluid compound might thus represent a fluid-saturated porous medium or
a suspension. Each constituent is assumed compressible.

An important step in the development of the macroscopic continuum mechan-
ical model has been the closure of the underlying set of equations in such a way
that the specific multi-material flow associated with vibro-injection pile installa-
tion in saturated sand is described. General closure models have been defined in
order to account for the physics of each material and at the material interfaces.
In particular, the macroscopic mechanical behavior of a porous medium repre-
senting sand is described by a hypoplastic rate constitutive equation advanced
in the Subproject 1 of this research unit. Closure models are also required for the
evolution of variables characterizing the interfacial structure. These latter mod-
els, called topological closure laws, had been initially left uncompleted because
no evolution equation could be specified for the volume fractions of the phases
in the mixture. By assuming a priori homogeneous distributions of pressure and
velocity for all phases of the mixture the set of equations have finally been closed,
resulting in a two-equation (two-field) reduced model. This model will be em-
ployed in Part 2 to develop a new multi-material arbitrary Lagrangian-Eulerian
(MMALE) numerical method particularly suitable to simulate pile installation.
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Notation

Symbols and Operators

· single contraction of tensors

: double contraction of tensors

⊗ tensor product

〈·〉 spatial average

J·K jump across an interface

(·)−, (·)+ associated with the begin, with the end of the remap step

(·)dev deviator of a second-order tensor

(·)j associated with the j-th control volume

(·)n, (·)n+1 associated with time tn, tn+1

(·)n+θ associated with time tn+θ

(·)T transpose of a tensor

(̀·)k material time derivative of a k-phase-related field along vk

˙(·)βk material time derivative of β-species-k-phase-related field along vβk
O

(·) Zaremba-Jaumann rate

∇(·) covariant derivative

A corotated set of material state variables

b microscopic body force per unit mass

bβk average body force per unit mass of the β-species of the k-phase

〈b〉 average body force per unit mass of the mixture

c convective velocity

c generic fourth-order material tangent tensor

c fk material tangent tensor for the fluid species of the k-phase

ck′ , ck′′ material tangent tensor for the k-phase effective Cauchy stress

csk material tangent tensor for the solid species of the k-phase

d(·) differential, gradient

dfk average spatial rate of deformation of the k-phase fluid species

dk k-phase mean spatial rate of deformation

dsk average spatial rate of deformation of the k-phase solid species

〈d〉 mean spatial rate of deformation of the mixture

div(·) divergence

dv volume form on the ambient Euclidian space

e void ratio

E,Ep Young’s modulus, plastic modulus
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fk k-phase volume fraction

f relative incremental deformation gradient

f constitutive response function

Fl(·) averaged convective volume flux

h generic set of material state variables

hk
′
,hk

′′
set of material state variables for k-phase effective Cauchy stress

hsk set of material state variables for the solid species of the k-phase

I second-order unit tensor

k index for the k-th phase of the mixture, k ∈ {1, . . . , nmat}
K microscopic bulk modulus

Kfk average bulk modulus of the fluid species of the k-phase

Kk average k-phase bulk modulus (undrained)

Kk
d average k-phase bulk modulus (drained)

Kk
uj average k-phase unjacketed bulk modulus

Ksk average bulk modulus of the solid species of the k-phase

〈K〉 mean bulk modulus of the mixture

lmacro characteristic length at the macroscale

lmeso characteristic length at the mesoscale

lmicro characteristic length at the microscale

nk k-phase fluid fraction, k-phase porosity

nmat number of material phases in the mixture

n∗ outward normals on an interface

p microscopic pressure

pfk average pressure in the fluid species of the k-phase

pk average k-phase pressure

pk
′
, pk

′′
k-phase mean effective stress

psk average pressure in the solid species of the k-phase

pβk average pressure in the β-species of the k-phase

P k phase function, indicator function

P kSβ phase-species function, indicator function

q generic scalar-, vector-, or tensor-valued microscopic spatial field

q̂ referential or ALE description of the field q

R rotation related to a corotational rate

s microscopic extra stress

sfk average extra stress in the fluid species of the k-phase

sk average k-phase extra stress
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sk
′
, sk

′′
k-phase effective extra stress

ssk average extra stress in the solid species of the k-phase

sβk average extra stress in the β-species of the k-phase

〈s〉 average extra stress of the mixture

Sβ species function, indicator function

S ambient Euclidian space

S corotated Cauchy stress

t time

tn, tn+1 time at the beginning, at the end of a time step

tn+θ intermediate time in a time step, with θ ∈ [0, 1]

tr(·) trace of a second-order tensor

u mean spatial displacement field of the mixture

v microscopic spatial velocity

vfk mean spatial velocity of the fluid species of the k-phase

vI interface velocity

vk k-phase mean spatial velocity

vsk mean spatial velocity of the solid species of the k-phase

vβk mean spatial velocity of the β-species of the k-phase

〈v〉 mean spatial velocity of the mixture

V ′ volume measure of V ′ in the ambient Euclidian space

Vj volume measure of the j-th control volume

V spatial domain of interest

V ′ representative volume element (RVE)

x, x′ points in the ambient Euclidian space

z penetration depth

αk k-phase Biot-Willis coefficient

β index for the β-th species of the mixture, β ∈ {s, f}
Γ βk momentum transfer onto the k-phase β-species due to drag forces

δβkI Dirac delta picking out the β-species-k-phase interface

∆E corotated algorithmic finite strain increment

∆r algorithmic finite rotation increment

∆R incremental rotation

∆S corotated Cauchy stress increment

∆t time increment

∆ε algorithmic finite strain increment

ε̇svol average volumetric strain rate of solid grains
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Πβk mass transfer onto the β-species of the k-phase

ρ microscopic spatial mass density

ρfk average mass density of the fluid species of the k-phase

ρk average k-phase mass density

ρsk average mass density of the solid species of the k-phase

ρβk average mass density of the β-species of the k-phase

〈ρ〉 average spatial mass density of the mixture

σy, σy0 yield stress, initial yield stress in uniaxial tension

σ microscopic Cauchy stress

σfk average Cauchy stress in the fluid species of the k-phase

σk average k-phase Cauchy stress

σk
′
,σk

′′
k-phase effective Cauchy stress

σsk average Cauchy stress in the solid species of the k-phase

σβk average Cauchy stress in the β-species of the k-phase

〈σ〉 average Cauchy stress of the mixture

Φ relative motion of the ALE reference domain

ω vorticity tensor

Abbreviations

ALE Arbitrary Lagrangian-Eulerian

CFD Computational Fluid Dynamics

FEM Finite Element Method

MMALE Multi-Material Arbitrary Lagrangian-Eulerian

PIV Particle Image Velocimetry

RI-pile vibro-injection pile (“Rüttelinjektionspfahl”)

RVE Representative Volume Element
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