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DYNAMIC INTERACTION BETWEEN RAIL TRACK SYSTEMS AND THE SUBSOIL 
SOLUTIONS IN THE FREQUENCY- AND TIME DOMAIN 

Prof. Dr.-Ing. S. Savidis 
Technical University Berlin 
Soil Mechanics and Foundation Engineering 
StraBe des 17. Juni 135. 10623 Berlin, Germany 

DipI.-Ing. S. Bergmann, Dipl.-Ing. C. Bode, DipI.-Ing. R. Hirschauer 
Technical University Berlin 
Soil Mechanics and Foundation Engineering / Mechanical Engineering 
StraRe des 17. Juni 135, 10623 Berlin, Germany 

ABSTRACT 

For the numerical simulation of dynamic soil-structure interaction problems both a frequency and a time domain formulation are presented. 
In order to be capable to consider more sophisticated models of the structure, the frequency domain algorithms for homogeneous and 
layered halfspaces have been coupled to the Finite Element Program ANSYS. Flexibility functions are presented for a concrete slab track 
system. Furthermore the stress distribution in the subsoil is calculated and visualized. The time domain formulation is applied for demon- 
strating the basic phenomena of a moving load passing by with sub- and supercritical speed. Besides that, a nonlinear, tension-free condition 
of contact between the track and the subsoil is mentioned briefly 

INTRODUCTION SUBSTRUCTURE ‘TRACK’ 

The steady increase of the travelling speed of modern high-speed 
trains accompanied by higher dynamic interactions with the 
underlying soil led to an increasing effort for the maintenance of 
ballast supported railroad tracks. As a consequence new slab 
track systems have been designed and constructed. These slab 
track systems exhibit a distinct dynamic behavior compared with 
ballast supported railroad tracks, whereby in all cases the inter- 
action with the semi-infinite subsoil has to be taken into account. 

In this paper a procedure for the simulation of the dynamic 
behavior of the track (ballasted track or slab track systems) and 
the subsoil is presented. Based on the substructure method, the 
system under consideration has been divided into two substruc- 
tures which have completely different properties: a) the track 
(finite structure) and b) the subsoil (unbounded continuum). First, 
the basic equations describing the dynamic behavior of each 
substructure have been derived independently. Then, the influ- 
ence of the unbounded soil on the dynamic behavior of the 
structure is introduced at the interface between both substructures 
as a boundary condition for the structure. In the present paper 
this boundary condition is based on a displacement-force rela- 
tionship (flexibility formulation) calculated by using the influ- 
ence functions (Green’s functions) for a layered or homogeneous 
halfspace. 

The track will be modeled by using the Finite Element Method. 
Hence, the governing equations of motion will be transformed to 
a linear set of equations written in the nodal degrees of freedom 
(DOF) of the structure. Eq. (la) gives the resulting dynamic 
equilibrium of the structure in the frequency domain, whereas 
Equation (lb) expresses the equilibrium in the time domain for 
the time step t’+’ 

(-w’M+iuD+C)u =P-Q (Ia) 

Mu”’ + Du”+l + cu”+l = p”’ _ Ql+l (lb) 

M: Mass matrix of the structure 
D: Damping matrix of the structure 
C: Stiffness matrix of the structure 
u: Vector of the nodal displacements 
P: Vector of the applied external loads 
Q: Vector of the interaction loads between soil and structure 
u : Angular frequency 
t : Imaginary unit 
i: Index of time stepping 

The vector of the interaction loads Q represents the influence of 
the subsoil on the dynamic behavior of the structure and enforces 
the coupling of both substructures in the sense of the soil- 
structure interaction. 
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SUBSTRUCTURE ‘UNBOUNDED SOIL’ 

Freouency domain formulation 

The description of the unbounded soil starts from the so called 
influence functions for harmonic point loads acting on the surface 
of the halfspace. They can be calculated analytically in the case 
of a homogeneous halfspace [Lamb, I9041 or semi-analytically 
by means of the Thin-Layer-Method [Kausel, 19861 in the case 
of‘ a layered one. In Eq. (2) the relationship between the soil 
displacements wu (w, r) (cu = X, J’, Z) at an arbitrary point due to 
a point load fp(w) (p = X.JB,Z) acting at the surface of the 
halfspace is given exemplarily for the homogeneous halfspace by 
means of the Green’s function ,&,, (w. 1.) 

The distance between the source (point load) and the receiver is 
given by r. whereas G represents the shear modulus of the soil. 

In order to obtain the resultant interaction loads Q it is necessary 
to solve a mixed boundary-value problem in which zero stresses 
are imposed on the soil surface outside the interface, while at the 
interface displacements according to the motion of the upper 
structure have to be imposed. To overcome this problem, the 
interface is discretized into N sub-areas (contact elements) of 
uniform rectangular shape [Savidis & Richter, 19791. Within 
each sub-area the contact stresses are assumed to be constant 
(Fig. 1 left). Since influence functions for point loads are used. 
quite arbitrary shaped geometries as well as arbitrary distributed 
contact stresses are basically possible. The soil displacements are 
represented by the corresponding quantities at the midpoints of 
the sub-areas (interaction points, see Fig. I right). These as- 
sumptions necessitate the calculation of the soil displace- 

“’ ment ~IJ”’ at the ,I interaction point caused by the uniform 
contact stresses @“I acting on the k’h sub-area. To accomplish 
this, Eq. (2) must be integrated over the loaded area bA 

Using a compact vector-matrix notation, the combined effect of 
all contact stresses acting on the soil-structure interface (ex- 
pressed by the vector q) on the soil displacements at all interac- 
tion points (captured by the vector w) can be written as 

w(w) = F(w).q =a q = F-’ (co). w(w) (4a,b) 

Thus, F(w) can be interpreted as the flexibility matrix of the soil. 

Next. it is necessary to relate kinematically the structural dis- 
placements II with the displacements w at the interaction points. 
This is necessary because the structural degrees of freedom at the 
soil-structure interface generally do not coincide with those 
introduced for the subsoil (displacements at the interaction 
points). This can be done by means of a simple linear transfor- 
mation matrix T” involving the element shape functions 

w =TU.u (5) 

A similar transformation matrix TQ holds for the transformation 
of the contact stresses to their resultants, the so-called interaction 
loads as, 

Q=T”,q (6) 

by taking into account the applied external work. Introducing the 
vector q (Eq. 4b) in Eq. (6) and performing the transformation 
given in Eq. (5), the interaction loads can be written in terms of 
the nodal DOF of the structure as 

Q=TC’.q=TV.F-‘-T”.u=C,.u (7) 

The interaction loads Q in Eq. (I a) can be replaced by Eq. (7). 
where the matrix C, appears to be the dynamic stiffness matrix 
of the soil in terms of the nodal DOF of the finite structure. 

Contact stresses 

Contact clcmcnts 
Area AA 

Intcraclion points 

Fig. 1. SpAal discretizutinn ofthe contuct urea hetMwn the finite structure md the unbounded soil (contact mesh) with the assumption 
of’un~form contuct .stresses bcithin each .&-area (cnntuct element) 
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Time domain formulation solved, it is also possible to calculate, the soil displacements at 
any point in the subsoil. 

The relationship between the vector of the soil displacements w 
at all interaction points and the vector of the uniform contact 
stresses q of all sub-areas. both arranged in 3N x l-vectors, can 
be expressed by means of a convolution integral: 

w(t)=jF(r-T)-q@)d? (8) 

with F(t) = & I F(w)e’“‘dw (9) 

being the unit impulse (Dirac impulse) response matrix. Its 
element F(‘“) denotes the displacement (flexibility) at the jlh 
interaction point due to uniform contact stresses acting on the klh 
contact element. It can be derived by applying a numerical Fast 
Fourier Transformation on the flexibility of the subsoil F(u). 
Writing Eq. (8) in a discretized form yields the absolute soil 
displacements at the time t”’ : 

W 
1+1 =AtF’.q’+...+AtF’.q’+AtF”.q’+* (10) L-- ---- L-,.- 

1l1\1111~ p,\,, Ai,“di p:,,, 

F’“) stands for F(kdt) while the superscript at q indicates the 
corresponding time. For the following considerations it proves to 
be appropriate to split the expression containing all the contact 
stresses into one part caused by the known contact stresses up to 
the time I’ (history part) and a second part caused by the un- 
known contact stresses qf+l at the time tl+l Remember that the 
latter have to be determined. Denoting the history part of the soil 
displacements with w”“’ and interpreting AtF” as the actual 
flexibility matrix F”” , Eq. (10) can be rewritten as follows: 

WI+’ 
= w’““+ F”” $+I 

(I I) 

Based on Eq. (I I) the coupling of the subsoil to the finite struc- 
ture is straight forward. After simple transformations similar to 
those being described in the frequency domain, the relationship 
between the interaction loads and the actual displacements can be 
determined as 

with 

Given initial values for both displacements and velocities, the 
equation of motion ( I b) can be solved by a time step integration 
scheme, such as the implicit Newmark’s p method described in 
[Bathe Cpr Wilson, 19761. The displacements and velocities at 
time f’+’ resulting from a predictor-corrector-formulae will be 
used to evaluate the current interaction loads from Eq. ( 12). After 
evaluating the equation of motion Eq. (1 b) and correcting the 
displacements as well as the velocities by means of the corrector- 
step. an iteration process is carried out until a desired tolerance 
is satisfied. Finally, after the interaction problem has been 

With the procedure described above the interaction problem is 
solved in the time domain, although the Green’s function repre- 
senting the (linear) subsoil have been determined in the h-e- 
quency domain. Hence, this procedure is called a ‘hybrid domain 
procedure’. Beyond that, a ‘pure time domain procedure’ has 
been developed, in which the Green’s functions are determined 
directly in the time domain [Bode, 20001. This procedure is 
substantially more efficient. However, by now it is limited to a 
homogeneous, linearly elastic and isotropic halfspace. 

Since the equations of motion are solved in the time domain, any 
nonlinearities in the track model can be considered. To do this 
the developed soil algorithms have been coupled to the Finite 
Element Program ANSYS, [Hirschauer et. al., 20001. To include 
a nonlinear, non-cohesive contact condition between the structure 
and the subsoil, the described algorithm has to be modified 
slightly [Savidis et. al., 2000]. 

NUMERICAL RESULTS 

Frequency dependent flexibilities of the slab track 

First, the dynamic interaction between a slab track system and a 
homogeneous subsoil is investigated. Fig. 2 shows the Finite 
Element mesh used for modeling the slab track. It consists of the 
rails supported by pads and 17 ties, a layered elastic plate and the 
subsoil, which is numerically described with Green’s functions, 
however it is not included in the illustration in Fig. 2. All com- 
ponents have been modeled as linearly elastic or linearly visco- 
elastic. The parameters for the investigations have been taken 
from a benchmark test carried out within the research project 
“System dynamics and long-term behavior of the vehicle, track 
and subsoil” funded by the German Research Association (DFG). 
The system is loaded symmetrically by two vertical and time 
harmonic forces at the rail above the middle tie. 

Fig. 2. Analyzed model of a slab track system consisting of 
m-ails, pads, ties and the slab. The subsoil is not illus- 
trated. 
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Fig. 3 shows the absolute values of the vertical tlexibilities at the 
upper side of the loaded tie (no. 0) and the 3 adjacent ties (no. I - 
3) as a function of the frequency. In Fig. 4 the corresponding 
values at the upper side of the rail can be seen. Starting from the 
static value the flexibilities at the ties (Fig. 3)decrease strongly 
within the frequency range between 20Hz and approximately 
SOHz, whereas the values at higher frequencies nearly remain at 
a constant value. On a qualitative level this behavior holds for a 
wide range of elastic plates interacting with the halfspace 

In contrast to this, a quite different dynamic behavior of the 
flexihilities with respect to the upper side of the rail can be 
observed. Starting from the static values, the tlexibilities de- 
crease again up to 30Hz. but with further increasing frequency 
also the tlexibilities are increasing. At about 1lOHz a maximum 
of the tlexibilities, slightly higher than the static value, can be 
seen in Fig. 4. This behavior can be related to the very soft pads 
between the rails and the ties, used in slab track systems. 

2,OE-OY 

Fig. 3. Absolut value of’ the jlexibilies ut the upper side of the 
ties no. 0 -3 us cl,function offrequenc) 

I .OE-08 

5 4.OE-09 
z 
r 
d 2,OE-09 

Fig. 4. Absolut value of the jlexibilies ut the upper side oj’the 
rail at the ties no. 0 -3 as a,function of,frequency 

Stress distribution under the slab track 

A simplified model of the track has been used to visualize its 
motion and to calculate the contact stresses as well as the stresses 
in the interior of the soil due to a harmonic excitation with a 
frequency of 50Hz. The concrete slab track has a length of 
15.0m, a width of 3.0m, a height of0.3m, a Young’s modulus of 
30000MN/mZ and a Poisson’s ratio v= 0.25. The subsoil is 
assumed to be a homogeneous halfspace with a shear modulus of 
80MN/m2, a shear wave velocity of 2OOm/s and a Poisson’s 
ratio v = 0.33. 

The snapshot in Fig. 5 shows the displacements of the track and 
the surrounding free field, whereas the corresponding contact 
stresses are given in Fig. 6. The stress distribution shows extreme 
values in the centre and at the edges beneath the plate. 

Fig. 5. Snapshot of the displacements sf a slab truck system and 
the free field due to a harmonic excitation Mrith a .fre- 
quency of 5OHz (exaggeruted for visuulization) 

Fig. 6. SnLtpshot qf the contact stresses underneath a slab truck 
due to a harmonic excitation with a,frequency of 5OHz 

Fig. 7. Snupshot ef the vertical normal stresses in the interior 
of the halfipace under a slab track due to a harmonic 
excitation with a frequency sf50Hz 

The stress wave propagation into the interior of the halfspace is 
influenced by the slab. The point loads acting on the rails is 
widely distributed due to the stiffness of the track and therefore 
acts as a distributed load on the halfspace (Fig. 7). 
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Simulation of a moving wheel-set 

To simulate a moving wheel-set a system of I 1 rigid ties resting 
on a homogeneous soft subsoil has been investigated, see Fig. 8. 
The wheel-set has been modeled by two concentrated loads 
moving from tie to tie with a constant speed. Thereby the number 
of ties was sufficient to simulate the substantial phenomena of 
moving loads. 

Fig. 8. Sin~ulation of a moving wheel-set along u qstern of I1 
rigid ties 

With L’ ,,,,,,, = 225kmlh and v ,,,,,,, = 450km/h two different velocities 
have been chosen in order to investigate the effects of travelling 
with subcritical and supercritical speed, compared to the speed 
of the most dominant Rayleigh wave at the surface of the soil 
(v ,,,,i ,,., r,, = 335kmfh). 

In Fig. 9 and Fig. IO snapshots of the displacement field are 
shown for the passage with subcritical and supercritical speed, 
respectively. Regarding the subcritical case (Fig. 9), surface 
waves can be detected in front of the load. This is indicated by 
the displacements of the soil surface as well as by the ties in front 
of the load being in motion before the arriving of the load. 

However, in the case of a passage with supercritical speed (Fig. 
IO) no surface waves can be detected in front of the moving load, 
The ties being approached by the moving load are still almost at 
rest (the leading, but not particularly distinctive longitudinal 
waves disturb the status of the perfect rest). As expected, a 
wedge-shaped wave front in the free field shows up behind the 
load, which is known from acoustics as being a Mach’cone. 

CONCLUSIONS 

The preceding examples have shown the efficiency of the imple- 
mented procedures for the frequency and the time domain for- 
mulation. This opens a broad spectrum of practice-relevant 
applications to be calculated. 

of the track may be extracted. Moreover, the dynamic stresses in 
the subsoil - to be used for an estimation of the track settlement 
- can be obtained in a subsequent procedure. The included non- 
cohesive condition of contact allows a more realistic modeling of 
the coupling between the ties to the subsequent layers. 

Fig. 9. Snapshot.v oj’the motion of a II-tie system; subcr-itical 
cr~se Iv ,,,,,,, =225kndh -c v, ,,,,,, ,,=335kndhj 

In particular the coupling of the developed algorithms to the 
Finite Element Program ANSYS allows the investigation of the 
interaction of quite arbitrary rail track systems with the layered 
subsoil. Nonlinear constitutive relations can be considered as 
well. To design the track system inner forces of any component 
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Fig. IO. Snapshots of the motion oj’u II-tie system; supercritical 
case (v ,,,,,, ,=450knI/h > vRiii ,,,,,, =335knl/h) 
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