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Proceedings: Second International Conference on Recent Advances In Geotechnical Earthquake Engineering and Soli Dynamics, 

March 11-15, 1991 St. Louis, Missouri, Paper No. 10.21 

Three Dimensional Wave Propagation due to Pile Driving 

S. Savldis 
Professor of Soli Mechanics and Foundation Engineering, Technical 
University, Berlin, Germany 

A. Mltakldls 
Consulting Engineer, Berlin 

SYNOPSIS: A very economical and efficient method to construct pile foundations or sheet walls is 
given by the driving of the pile itself in the case of prefabricated piles or of the steel-sheet pi­
pe for concrete piles in situ and also by the driving of the sheet piles in the case of sheet walls. 
In spite of its efficiency this method underlies, because of environment protection reasons to cer­
tain restrictions, that concern the influence of the produced shock waves during the driving proce­
dure to neighboring buildings and constructions. 
For the theoretical calculation of this influence at first the free-field response of the ground due 
to the propagated shock waves will be requiered. The source wave is generally of transient nature. 
The authors deal in this contribution with the theoretical calculation of free-field magnitudes for 
an elastic homogeneous half-space as an adequate model for an idealized ground. 

INTRODUCTION 

The problem of the three dimensional wave pro­
pagation in elastic media and particularly in 
those media restricted by a natural boundary, as 
the elastic half-space by its surface, has been 
intensivelly investigated in the last years by 
many authors. The most of the known solutions 
appears in the frequency domain. Johnson, 1974, 
yields the first analytical and complete solu­
tion of the oroblem in time domain. Allthough 
the solution is mathematically komplex the ex­
pressions obtained there are very simple.Because 
of some slight but essential mistakes in the so­
lution of Johnson, Mitakidis, 1989, resolved the 
three dimensional boundary value problem follow­
ing the work and the solution technics of John­
son. The solution represents exact and in mathe­
matically closed form evaluated Green's func­
tions for the elastic half-space which are 
pointed out by an absolutely stable behavior in 
their numerical treatment. 

SOLUTION OF THE PROBLEM IN TIME DOMAIN 

The problem of the three dimensional wave propa­
gation in the elastic homogeneous half-space 
consists in the solution of the Lame-Navier 
equation of motion. 

~ ~ u(x.t) = f<x.ll+ Utf-L)V(Vu<x.lll+f-L.6.U.Cx,ll (1J 

aP 
In eq. (1) is u the displacement vector, x the 
location vector to the considered point A in the 
interior of the half-space,£ displays the force 
as source for the propagated elastic disturbance 
at the source point Q. The infinite elastic me­
dium is given by its Lame constants ~ and ~. 
Fig. 1. In order to proceed in the solution of 
eq. (1), the source function f, a single point 
load in the interior of the half-space will be 
loclized in time and space with Dirac-delta 
functions: 

f<x,tl = <~ f'1 + ~e2 + f3e3)6(~,·X1 )J c x2.. X.~,> eSc x3- X~)6Ct-T) < 2 J 

Fig. 1: Geometry of the problem: displacement u 
at point A due to force f at a point Q 

In eq. (2) x1, x2, x3 and t corresponds to the 
location and the arrival time of the disturbance 
at the control! point A, X1, X2, X3 and T cor­
responds to the location and the moment of ap­
plying of the force f at the source point Q. For 
a force vector, as given by eq. (2) the solution 
of eq. ( 1) corresponds to a Green's function so 
that we can write 

U(x,tJ = 9 (x, t; X .T) 
( 3) 

= ~1 <x.t; X,T)e
1 

t g
2 

(x. t; X,T) e2 + 9
3 

(x,t; ~.T)£3 

Physically g (x,t; X,T) means the displacement 
vector at moment t at the control! point A with 
location vector x = (x1, x2, xJ.) due to an im­
pulvive single point load F applied at time T 
at the source point Q with location vector 
x = (X1 , x2 , x3 J • 
The eq. (1) is solved analytically by the aid of 
the Cagniard-De Hoop transform technic, 
Mitakidis 1989, accordingly to the work of 
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Johnson, 1974. The complete solution will be 
represented here for the case X3 = O, Point A 
at the surface, because the most interesting 
phenomena take place at the surface of the 
ground. For this case the solution has the form: 

[G" 
G,z 

G"] G = Gz.t G22 Gn F 

G31 G~ Ga3 

(4) 

where 

G = <:,P t G5 (5) 

The upper indizes P and S in (5) characterize 
the P - and S - wave parts respectivelly of 
which consist the solution vector G. For the 
problem considered here only the two components 
G13 and G33 will be used. After Mitakidis, 1989, 
they have the followi~g form: 

(6) 

(7) 

(8) 

~ 

I U(t-flRe)2!Jsnp(q2-P2
) }dp 

s lo (£.- ..1_ - oz)11z 
0 T1 V{' I 

(9) 

In the case of flat radiation sin{)> Vs/Vp 

and t > r~ pz.+ ~2 are 

G5 = _1_ ~ IP,UH-t) Ae { -TisQ r c:o~dJ }dp 
13 Ol.j..lf 3f I ( .f.2 - 4 - 2} 1{2 o ~TTVlP 

(10) 

G:
3 

= _1_ .! [fl UCt-t1) Re { 2n$np (q2
- P

2
) ) dp 

n2W at 5 (..E._ 1 _ pz)''.z o .,-z Vl 

(11) 

For t < rVpz+ ~ eqs. (11) and 12) become the 
form: I Vs 

In the above eqs. (6) ./. (13) the following 
symbols have been used: 
U (t): is the Heaviside's unit step function 

P (£. _ __!_ )1/z 
p rz Vr/ 

p = (..!.:- .2.)1/2 
s .,-z. y~z 

v = { 2(1-v) ~ )''2 
p \ Ci-2v)s> Longitudinal wave velocity 

v s = ( ~ ) 1/2 shear wave velocity 

1lp = ({_r+ p2_ ~2) 1f2 

6' = '12 + 4npns ( q;- pz) 

[ 
i ( 1 4 )''2 (} ) ~/2 P. = ( T - v;t. - Vp'l COS\1)- _!_ 

1 Sin& vrf 

~ (' • Q. ( 1 1 )1/Z Cl. ll : - SJnV~ '('- -- COSIT 
Vp Vs2 Yp 

For the components with upper index 
tion variable q is given by 

p the separa-

a = - _!_ sin.& + i (.E.. _ J.: _ pz) 112 
cos & f r rz Vp ( 14) 

In eqs. (8), (9), (12) and (13) 

q ""- ...!._sin-&~ i ( _£ - _1_- Pz)f/z c:os-& 
q is given by 

T rz Vl (15) 
Finally in eqs. (10) and (11) q has the form 

0 =- ...Lsin3.f_!_ _...!:. + p2)
112 cos& -_.. "f \v.} r 2 (16) 

By ommiting the differentiation after the time 
the expression in eq. (6) till (13) yield the 
response of the half-space surface to a Heavisi­
de unit-step function, Fig. 2 ./. 4. 

1o·13 G33!m] PI sl r 
·2J. \ 

-6,8 

-11.2 

0,0 1.0 2.0 3.0 u tis) 
XA•IOkno,YA•O .. ZA•() ,XQ•() ,YO•O .ZO•O.Olun 
NUE•O. 2~.RHO•J.J, Vs•< .62km/s 

Fig.2a: Green's function G33 
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1o-1l, Gl]lml PI sl Rl 
..:r--___:_ 

-1.48 

-3,36 

-5.24 

-7,12 

0.0 1.0 2,0 3,0 4,0 t(sl 

XA•IOkm,YA•O ,ZA•O ,XO•O ,YO•O ,ZO•O.Okm 
NUE•O. 2~.RHO•J. J, Vs•4. 62km/s 

Fig. 2b: Greens's function G13 

Excitation of the half-space surface 
by Heavidide's unit step function 

Figure 2 shows the surface behavior of the h~lf 
space due to the Heavidide's unit step funct~on 
acting at the half-space surface. The epicentral 
distance XA of the control! point A has been 
choosen to be 10 km, the Poisson ratio V of the 
medium ammounts 0,25 , the density 9 = 3.3 t/m' 
(rock material) and the shear wave velocity is 
vs = 4.62 km/s. 

All the three wave types of the half-space oc­
cure very clearly and they are pointed out by 
the symbols P for the Longitudinal wave, S for 
the shear wave and R for the well known Rayl­
leigh-wave. 
In Figure 3 the source of the elastic disturban­
ce moves from the surface to a depth of ZQ 

= 2.0 km. All the other parameters remain the 
same. This is the case of flat-radiation. 

1o-13 G33 !ml 

1.2 

0,4 

-0,4 I ·I r SP 

-1,2 

Is 
0,0 1,0 2,0 3,0 4,0 t(s] 

XA•IOkm,YA•O ,ZA•O ,XO•O ,YQ•O ,10•2km 
NUE•O. 25,RHO•J. J, Vs•4. 62km/s 

Fig. 3a: Green's function G33 
Hypocentral distance z0 
Epicentral distance XA 

2.0 km 

10.0 km 
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10-13 G13lml 

-0,37 

-0.78 

-1,18 

-1,59 

0,0 tO 

l I 
SP 

2,0 3.0 4,0 

XA•IOkm,YA•O ,ZA•O ,XO•O ,YO•O ,10•2ko 
HUE•O. 25 ,RHO•J. J, Vs•4. 62km/s 

Fig. 3b: Green's function G13 

t (s] 

In Figure 3 we can see, that a very interesting 
phenomenon coccurs as the wave source leaves 
the surface of the half-space: The main signal 
of the arriving R-wave dissapears and another 
signal between the P- and s-wave appears. This 
is the refracted at the surface of the half­
space SP-Wave. The SP-Wave, or also known as 
head wave, occurs only in the case of flat radi­
ation, it means in the case, that the radiation 
angle satisfy the condition: sin~ >. v~ IV:p, 
Fig. 1. Finally in Fig. 4 the source l~es ~n a 
depth of ZQ = 10 km and the epicentral distance 
of the considered point A ammounts 2 km. Here we 
have the case of steep radiation, sin6' < Vc.,/Vp, 
for which only the two main wave types P+S exist. 

1Q-13 G33[m] 

1,8 0 

1,20 

0,60 

0,0 1,0 

1o·ll Gulml 

-0,16 

-0,32 

-0,48 

-0,64 

0, 1,0 

p 

I 

r 

I 
s 

2,0 3,0 4,0 

2,0 3,0 4,0 

XA•2km,YA"O ,ZARO ,XQ"O ,YO•O •• ZO•IOkm 
NU£ .. 0. 25,RH0•.3. 3, Vs•4. 62kn..js 

Fig. 4a: Green's function G33 

4b: Green's function G13 

t( s] 

t(s] 



SYSTEM RESPONSE TO ARBITRARY TRANSIENT LOADS 

Because of the fact that the Green's function 
represents also the transfer function of the 
system half-space, they can be used to calcula­
te by the aid of the Duhamel's convolution in­
tegral the system response to any arbitrary 
transient load, eq. (17). 

t 
XW= f. dHi-·d gcrr>ct'[ <1 n 

0 d't 

X(t): System response at time t 

f(t): Load function 

g(t): Transfer function of the considered 
system, must be known. 

For the considered system of the elastic homo­
geneous half-space we obtain 

Wij (t)= f: dfa~l-ll Gij(.~)ct.il ( 18) 

The half-sinus impuls load: 

we consider a half-sinus impuls with a duration 
Timp and a peak magnitude P0 . 

{ 

Posi

0

nnt 
fU) = 

Cor 0 d < n 1.!2 

for hn/.Q. 

Setting the load function f(t) and the evaluat­
ed Green's function G33 and G13 in eq. (18) we 
obtain for the vertical and radial displacement 
components W33 and W13 Of the half-space surfa­
ce due to a half-sinus impuls: 

Wn (t) = f 
0 

where 

t 
d{ et-A) 

dA 

dffi-)) = -.Q~c.os..Q(i-.11) 
d) 

( 19) 

(20) 
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R 

-3.20 

R= 40 m 

-11.60 

0,00 0,80 t[s] 

lo-5 w33 
[m] 

3,60 

-3,20 R = 60 m 

-6,60 

0,00 0,40 0,80 l [s] 

R 

4, 00 

1,00 
p s 
t .Jt A-

-2. 00 
R =100m 

-5.0 0 

-8.00 L---.-----...!.,---..---...----r----r--
0.00 0,60 1.20 t [s] 

Fig.S Free field amplitude due to a half-sinus 
impuls at the surface of the half-space 
Po = 2000 kN; f? = 1.8 t/m 3 , v = 0.33 
Timp = 0.05 s 



-1,6 

• s 

-6,2 

R= 20m 

-10,8 

0,00 0,12 0, 24 t(s) 

k 

2,40 

-0,2 0 

-2,80 

R= 40m 

-5,40 

0,00 o.io 0,40 t[s) 

Fig.6 Free field amplitude due to a half-sinus 
impuls at the surface of the half-space 
Po= 2000 kN; p = 1.8 t/m 3 ; V = 0.49 
Timp = 0.05 s 

Figures 5 and 6 display the graph of the displa­
cement component W33 as given by eq. (19) evalu­
ated for various distances R from the source. In 
both figures we see clearly all the three wave 
types of the half-space excited at its surface. 
They are denoted by the symbols P, S and R. 
The Rayleigh wave is dominant and occurs just 
after the S-Wave signal. 
For materials with great Poisson ratios , Figu­
re 6 ( Y = 0. 49), as for example water saturated 
soils, the P-Wave compared to the S-Wave arrives 
with a considerable strong signal. This phenome­
non has been very often neglected in the past 
years. 

Harmonic point load: 

We consider a harmonically oscillating vertical 
load p ( fH(t) = exp UH) 
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v- -4,0 -
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-
~ 1,0 -1:: 
3: 
i -1,0 
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Fig. 7: Free field amplitude due to harmo­
nic load, displacement W33 
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,!;. 
1,6 

~ 

3:: 1,2 

"' CZI .... 0,8 

o.~ 

0,0 32.0 64,0 96.0 128,0 Q[Hz) 

32.0 64,0 96.0 128.0 

-1.4 

o.o 32.0 64.0 96,0 m.o Q[Hz] 

Fig. 8 Free field amplitude due to harmonic 
load, displacement W13 

In order to calculate the system response to the 
harmonic load we make use again of eq. (18) and 
we obtain for the two components W33 and W13 

co 

W3,(il)= -1..0.P f elCp(-i..Q~)(J33 0)d~ • exp(i..O.O (21l 

0 

and 

a> 

Wl3(.0.)=-i.QP Jexp(-i...Q~)G13 0)d:A • exp(l!20 , 22 > 

0 

The integrant in eqs. (21) and (22) respresents 
the steady state oscillation of the half-space 
surface. 

Figures 7 and 8 show the response of the half­
space surface due to a harmonic load with ampli 
tude P = 2000 kN acting in a depthof ZQ = 100 m 
in the interior of the half-space. The empicen­
tral distance of the control point amounts 
R = 20.0 m. 

The considered half-space has a Poisson ratio of 
V'= 0.33, a density p = 1.8 t/m 3 and the shear 

wave velocity is vs = 200 m/s. 
Figure 7 displays the vertical component w3 3 after eq. (21). 

The displacement components are given by their 
absolute value and the phase to the applied 
harmonic load is defined by 

cj> = ardq k~ (23) 

In Figure 8 we see the radial (horizontal) 
component W13, eq. (22) 

MODEL FOR SIMULATION OF PILE DRIVING AND RESULTS 

Drive equipment 

~ 

Hodel 

I P(t}~ 
lmpu!s 

I far fi e!d 
I 
I _y~33 
~-----rt~ 
r""'~· w,3 
I 
I 

skin fric lion 

Fig. 9 Simulation model for pile driving -
Free field response of the half-space 
surface 

The created solutions for the free field respon­
se to a half-sinus impuls, eqs. (19,20), will be 
used here to simulate the free field response on 
the surface of a half-space, given by its densi­
ty 9 , Poisson ration v and shear wave vel city 
Vs, due to a pile driving process. The calcula -
ted free field response is of practical interest 
in the far-field. In the near field is the re­
sponse muchmore affected by the elasto-plastic 
phenomena which take place during the driving 
process and which phenomena cannot be consider­
ed by this theoretical solution. The pile consi­
dered here has a total length of Lp = 15.0 m. 
The length of the pile shaft in the soil amounts 
Ls = 9.0 m. The skin friction acts along the 
length Ls with the ordinate To at the surface of 
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10-5 wll 
Iml 

-0,60 

-5,60 

-10,,0 

-15.20 

.o.oo 0,12 0.24 tis] 

1o·5 W33 
lml 

-1,6 0 

-6.20 

-10,60 

-15,, 0 

0,00 D .12 O,H tis] 

Fig. 10 Free field amplitude W33 (t) 

a) skin friction 0 \, toe bearing 100\ 
b) skin friction 50 \, toe bearing 50% 

Figure lOa shows the vertical component W33 (t) 
of the displacement on the half-space surface 
for the theoretical case of non existing skin 
friction. In Figure lOb the vertical displace­
ment W33 (t) is displayed for the case that 50\ 
of the impact magnitude will be emmitted from 
the pile to the soil by skin friction and the 
other 50 \ by the toe bearing capacity. 

By comparing both figures we see that skin 
friction affects the free field magnitude to 
become larger. This influence of the skin fric­
tion is pointed out more clearly in the figures 
lla and llb, which show the horizontal displace­
ment component w13 (t) . By considering of skin 
friction, 50 \ of the impact magnitude, the free 
field amplitude is about two times larger as in 
the case of neglected skin friction. 

10-5 wn 
lml 

3,60 

uo 

0,80 

-0,60 

D. 0,14 0. 28 lis] 

7,00 

4,00 

the half-space and Ts at the pile toe. The ra­
tio T0 /Ts has been choosen to 0.5. At the pile 
toe acts also the toe bearing capacity Ps . This 1.00 
half-sinus impuls acting at the pile head has a 
peak magnitude of Po = 2000 kN and its duration 
amounts Timp = 0.10 s. The wave propagation ve-
locity in the pile is VA = 4000 m/s (concrete -2,00 

pile). The sizes and Vs for the considered 
soil are: 

~= 1.8 t/m 3 ; V= 0.33; Vs 200 m/s 

The influence of the skin friction is here con­
sidered by integrating the single-point load so­
lution along Ls by the aid of Gaussian quadrat­
ure formula. The time stifting between the im­
pact at the pile head and the Gaussian points 
along the length Ls has been also considered. 
The control point at the surface of the soil, 
where the signals are messured has a distance 
R = 20 m from the pile. 

0,00 

Fig. 11 
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0.12 0.24 II s! 

Free field amplitude Wl3 (t) 

a) skin friction 0%, toe bearing 100% 
b) skin friction 50\, toe bearing 50 % 



CONCLUSIONS 

The phenomenon of wave propagation in the soil 
is described by so called Green's function. 
These solutions, gained by analytical methods, 
are numerically very stable and thus extremely 
suitable for investigations in various practical 
application purposes. By use of the Green's func­
tions the authors calculated the free-field re­
sponse of the half space due to various loads 
acting in the interior of the half-space or at 
its surface, as half sinus impuls or harmonic 
point load. Finally a pile driving process has 
been simulated. The outhors investigated the in­
fluence of some substantial parameters as skin 
friction and the toe bearing capacity of the pi­
le. 
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