82 research outputs found

    Bile acid-independent protection against Clostridioides difficile infection

    Get PDF
    Β© 2021 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.ppat.1010015Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7Ξ±-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7Ξ±-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7Ξ±-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7Ξ±-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.This work was supported by R01AI116895 to J.A.S.; U01AI124290, R01AI100914, P01AI152999, R01NR013497 to T.S.; P30DK56338 to A.S. from the NIH (www.nih.gov) and a CONACYT-COECYT (https://coecytcoahuila.gob.mx/) fellowship 2017-2022 scholar/scholarship 625561/472087 to A.M.A.Published onlin

    Next-Generation Probiotics Targeting \u3ci\u3eClostridium difficile\u3c/i\u3e through Precursor- Directed Antimicrobial Biosynthesis

    Get PDF
    Integration of antibiotic and probiotic therapy has the potential to lessen the public health burden of antimicrobial-associated diseases. Clostridium difficile infection (CDI) represents an important example where the rational design of next-generation probiotics is being actively pursued to prevent disease recurrence. Because intrinsic resistance to clinically relevant antibiotics used to treat CDI (vancomycin, metronidazole, and fidaxomicin) is a desired trait in such probiotic species, we screened several bacteria and identified Lactobacillus reuteri to be a promising candidate for adjunct therapy. Human-derived L. reuteri bacteria convert glycerol to the broad-spectrum antimicrobial compound reuterin. When supplemented with glycerol, strains carrying the pocR gene locus were potent reuterin producers, with L. reuteri 17938 inhibiting C. difficile growth at a level on par with the level of growth inhibition by vancomycin. Targeted pocR mutations and complementation studies identified reuterin to be the precursor-induced antimicrobial agent. Pathophysiological relevance was demonstrated when the codelivery of L. reuteri with glycerol was effective against C. difficile colonization in complex human fecal microbial communities, whereas treatment with either glycerol or L. reuteri alone was ineffective. A global unbiased microbiome and metabolomics analysis independently confirmed that glycerol precursor delivery with L. reuteri elicited changes in the composition and function of the human microbial community that preferentially targets C. difficile outgrowth and toxicity, a finding consistent with glycerol fermentation and reuterin production. Antimicrobial resistance has thus been successfully exploited in the natural design of human microbiome evasion of C. difficile, and this method may provide a prototypic precursor-directed probiotic approach. Antibiotic resistance and substrate bioavailability may therefore represent critical new determinants of probiotic efficacy in clinical trials

    Gastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3

    Get PDF
    Gastrointestinal (GI) problems constitute an important comorbidity in many patients with autism. Multiple mutations in the neuroligin family of synaptic adhesion molecules are implicated in autism, however whether they are expressed and impact GI function via changes in the enteric nervous system is unknown. We report the GI symptoms of two brothers with autism and an R451C mutation in Nlgn3 encoding the synaptic adhesion protein, neuroligin-3. We confirm the presence of an array of synaptic genes in the murine GI tract and investigate the impact of impaired synaptic protein expression in mice carrying the human neuroligin-3 R451C missense mutation (NL3R451C ). Assessing in vivo gut dysfunction, we report faster small intestinal transit in NL3R451C compared to wild-type mice. Using an ex vivo colonic motility assay, we show increased sensitivity to GABAA receptor modulation in NL3R451C mice, a well-established Central Nervous System (CNS) feature associated with this mutation. We further show increased numbers of small intestine myenteric neurons in NL3R451C mice. Although we observed altered sensitivity to GABAA receptor modulators in the colon, there was no change in colonic neuronal numbers including the number of GABA-immunoreactive myenteric neurons. We further identified altered fecal microbial communities in NL3R451C mice. These results suggest that the R451C mutation affects small intestinal and colonic function and alter neuronal numbers in the small intestine as well as impact fecal microbes. Our findings identify a novel GI phenotype associated with the R451C mutation and highlight NL3R451C mice as a useful preclinical model of GI dysfunction in autism. LAY SUMMARY: People with autism commonly experience gastrointestinal problems, however the cause is unknown. We report gut symptoms in patients with the autism-associated R451C mutation encoding the neuroligin-3 protein. We show that many of the genes implicated in autism are expressed in mouse gut. The neuroligin-3 R451C mutation alters the enteric nervous system, causes gastrointestinal dysfunction, and disrupts gut microbe populations in mice. Gut dysfunction in autism could be due to mutations that affect neuronal communication.This work was supported by an Idea Development Award from the United States Department of Defense’s Congressionally Directed Medical Research Programs (CDMRP) Autism Research Program (AR110134) to E.L.H.-Y. and J.C.B.; the Victorian Government through the Operational Infrastructure Scheme, National Health and Medical Research Council (NHMRC) project grants (APP566642 to J.C.B. and APP1047674 to E.L.H.-Y.) and the Royal Melbourne Hospital Neuroscience Foundation. E.L.H.-Y. also received an ARC Future Fellowship (FT160100126) and an RMIT Vice Chancellor’s Senior Research Fellowship which supported G.K.B. and S.H. T.S., P.U., and N.Y. were funded by grants RO1AI100914, P30-DK56338, and U01-AI24290 awards to Baylor College of Medicine funded from the National Institute of Allergy and Infectious Diseases and National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (T.C.S.)

    Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice With Colitis

    Get PDF
    BACKGROUND & AIMS: Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10(βˆ’/βˆ’) mice. METHODS: Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(βˆ’/βˆ’) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. RESULTS: Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. CONCLUSIONS: Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation

    MIND the gap: an astroglial perspective on barrier regulation

    No full text

    Brain–Gut Microbiome Interactions and Functional Bowel Disorders

    No full text
    Alterations in the bidirectional interactions between the intestine and the nervous system have important roles in the pathogenesis of irritable bowel syndrome (IBS). A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. A small and poorly defined role for dysbiosis in the development of IBS symptoms has been established through characterization of altered intestinal microbiota in IBS patients and reported improvement of subjective symptoms after its manipulation with prebiotics, probiotics, or antibiotics. It remains to be determined whether IBS symptoms are caused by alterations in brain signaling from the intestine to the microbiota or primary disruption of the microbiota, and whether they are involved in altered interactions between the brain and intestine during development. We review the potential mechanisms involved in the pathogenesis of IBS in different groups of patients. Studies are needed to better characterize alterations to the intestinal microbiome in large cohorts of well-phenotyped patients, and to correlate intestinal metabolites with specific abnormalities in gut-brain interactions
    • …
    corecore