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Clostridium difficile through Precursor-
Directed Antimicrobial Biosynthesis

Jennifer K. Spinler,a,b Jennifer Auchtung,c Aaron Brown,a,b
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Jessica Runge,a,b James Versalovic,a,b Alex Peniche,d Sara M. Dann,d
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Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USAa; Texas Children's
Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas, USAb; Alkek Center
for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College
of Medicine, Houston, Texas, USAc; Department of Internal Medicine, University of Texas Medical Branch,
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ABSTRACT Integration of antibiotic and probiotic therapy has the potential to
lessen the public health burden of antimicrobial-associated diseases. Clostridium diffi-
cile infection (CDI) represents an important example where the rational design of
next-generation probiotics is being actively pursued to prevent disease recurrence.
Because intrinsic resistance to clinically relevant antibiotics used to treat CDI (vanco-
mycin, metronidazole, and fidaxomicin) is a desired trait in such probiotic species,
we screened several bacteria and identified Lactobacillus reuteri to be a promising
candidate for adjunct therapy. Human-derived L. reuteri bacteria convert glycerol to
the broad-spectrum antimicrobial compound reuterin. When supplemented with
glycerol, strains carrying the pocR gene locus were potent reuterin producers, with L.
reuteri 17938 inhibiting C. difficile growth at a level on par with the level of growth
inhibition by vancomycin. Targeted pocR mutations and complementation studies
identified reuterin to be the precursor-induced antimicrobial agent. Pathophysiologi-
cal relevance was demonstrated when the codelivery of L. reuteri with glycerol was
effective against C. difficile colonization in complex human fecal microbial communi-
ties, whereas treatment with either glycerol or L. reuteri alone was ineffective. A
global unbiased microbiome and metabolomics analysis independently confirmed
that glycerol precursor delivery with L. reuteri elicited changes in the composition
and function of the human microbial community that preferentially targets C. difficile
outgrowth and toxicity, a finding consistent with glycerol fermentation and reuterin
production. Antimicrobial resistance has thus been successfully exploited in the nat-
ural design of human microbiome evasion of C. difficile, and this method may pro-
vide a prototypic precursor-directed probiotic approach. Antibiotic resistance and
substrate bioavailability may therefore represent critical new determinants of probi-
otic efficacy in clinical trials.

KEYWORDS Clostridium difficile, Lactobacillus reuteri, next-generation probiotics,
reuterin, antimicrobial resistance

Rising rates of antimicrobial resistance and the discovery of dwindling numbers of
new antibiotics are increasing the risk of a global infectious disease crisis that will

burden the health care system. In the United States, the Centers for Disease Control and
Prevention estimates that antibiotic resistance causes over 2 million illnesses and
23,000 deaths each year (1). An additional half a million individuals are hospitalized
with antibiotic-associated Clostridium difficile infection (CDI), contributing a further
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29,000 deaths (2) and a $5.4 billion burden to the U.S. health care system each year (3).
While the majority of patients with a primary diagnosis of CDI respond to frontline
antibiotic treatment (vancomycin or off-label metronidazole), up to 35% experience a
CDI relapse (4, 5) and have a significantly increased risk for multiple disease recurrences
(6). The limited options for the treatment of recurrent CDI include extended antibiotic
regimens (7), further contributing to the cycle of reinfection. Patients who suffer several
antibiotic treatment failures are often referred for fecal microbiota transplantation, an
investigational therapy with unknown long-term consequences (8). The National Ac-
tion Plan to Combat Antibiotic-Resistant Bacteria (9) emphasizes that efforts are
needed to advance the development of new antibiotics and alternative therapies to
fight resistance and the diseases associated with antimicrobial use. As a result, a
number of emerging therapies are being investigated, including probiotics, immu-
notherapies, toxin binding agents, defined microbial therapy, and nontoxigenic C.
difficile strains (7, 10).

Antibiotic disruption of a healthy microbiota leaves the host susceptible to CDI.
Probiotics are a promising alternative therapy and are proposed to combat
antimicrobial-associated diseases by preventing pathogen invasion and protecting the
healthy microbiota. Some promising adjunct therapies include the supplementation of
staggered antibiotic withdrawal with Lifeway kefir in recurrent CDI cases (11) or the
coadministration of Bio-K� with antibiotics to decrease the incidence of primary CDI
(12, 13). In the United States, adjunct therapy is not yet recommended by the Society
for Healthcare Epidemiology of America or the Infectious Diseases Society of America,
despite a growing body of evidence in the literature supporting probiotic use for CDI
prevention (14–16). Nevertheless, next-generation probiotics are actively being inves-
tigated for use in CDI prevention (17). Lactic acid bacteria have long been considered
important protectors of gut health, with many probiotic organisms belonging to the
genus Lactobacillus. Several Lactobacillus spp. are intrinsically resistant to antibiotics,
and this is an important feature when probiotics are considered for adjunct treatment
to antimicrobial therapy (18).

Naturally occurring antimicrobial production by host-specific probiotic bacteria is a
rich area for further innovation for the development of next-generation therapies
targeting drug-resistant pathogens. Certain human-derived probiotic Lactobacillus reu-
teri strains produce an isomeric mixture of 3-hydroxypropionaldehyde (3-HPA) (19), a
three-carbon secondary metabolite commonly known as reuterin (Fig. 1) with broad-
spectrum in vitro antimicrobial activity against enteric pathogens and other intestinal
bacteria (20, 21). The vitamin B12-dependent production of reuterin occurs when L.
reuteri ferments the substrate glycerol. This process is driven by the horizontally
acquired 57-gene pdu-cbi-hem-cob cluster containing genes important for (i) de novo
vitamin B12 synthesis, (ii) the generation of microcompartments where reuterin pro-

FIG 1 Reuterin synthesis pathway. Microbial fermentation of glycerol by L. reuteri results in the synthesis
of reuterin (3-HPA) and the corresponding by-product, 1,3-propanediol.
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duction occurs, and (iii) glycerol fermentation to reuterin (22–24). Indicative of its
probiotic character, reuterin does not typically interfere with the growth of commensal
lactic acid bacteria (20), and preliminary reports indicate that this compound may
promote microbiota diversity, a potential consideration in CDI (25).

In this study, we investigated the survival of select probiotic candidates under
antibiotic pressure. Using drugs marketed for treating CDI, our screening highlighted L.
reuteri as the organism that was the least susceptible to antibiotics. Further analysis
showed that the production of reuterin through the active fermentation of glycerol
prohibited C. difficile invasion of antibiotic-disrupted microbial community models,
making this precursor-directed antimicrobial biosynthesis strategy a front-runner for
the development of next-generation probiotics as adjunct therapy in CDI prevention.

RESULTS
L. reuteri is intrinsically resistant to antibiotics used to treat CDI. Intrinsic

resistance to multiple antibiotics is common in Lactobacillus spp., although the taxo-
nomic complexity of the genus has made it difficult to define the antimicrobial
susceptibilities of its members (26). To identify probiotics potentially useful in combat-
ing recurrent CDI, we determined the MICs of vancomycin, metronidazole, and fidax-
omicin, drugs currently used to treat CDI, for specific human-derived strains of candi-
date probiotics, L. casei, L. gasseri, L. rhamnosus, and L. reuteri (Table 1). A recent
U.S.-based surveillance study of the drug susceptibilities of diarrhea-associated C.
difficile isolates showed the MIC90 of vancomycin, metronidazole, and fidaxomicin to be
4, 2, and 0.5 �g/ml, respectively (27). L. casei LC-39 and L. rhamnosus LR-34, known to
produce factors that modulate the inflammation stimulated by C. difficile in vitro (28),
demonstrated substantial resistance to vancomycin and metronidazole, with an MIC
value of each drug �256 �g/ml, a concentration 64- or 128-fold greater than the
vancomycin or metronidazole MIC90 for C. difficile, respectively. However, these strains
were susceptible to fidaxomicin at 2 �g/ml, which is a concentration only 4-fold greater
than the fidaxomicin MIC90 for C. difficile and much lower than the estimated colonic
concentrations of fidaxomicin in patients (29). L. gasseri LG-3, an isolate from the feces
of a human infant, was resistant to metronidazole (MIC � 256 �g/ml) and susceptible
to vancomycin and fidaxomicin at 1 and 2 �g/ml, respectively. Human-derived L. reuteri
strains 17938 and 6475 demonstrated the most consistent and robust resistance to all
three drugs, with the MICs being from 64- to 128-fold greater than the corresponding
MIC90 for C. difficile. In all, the L. reuteri strains exhibited the lowest susceptibility to the
antibiotics used to treat CDI, potentiating their survival capabilities if given simultane-
ously with these drugs, and were further screened as potential probiotics for use in CDI
prevention.

Strain-specific, reuterin-dependent antimicrobial effects of L. reuteri on C.
difficile growth in vitro. Many human-derived L. reuteri strains metabolize glycerol into
the antimicrobial three-carbon aldehyde reuterin with broad-spectrum activity toward
enteric pathogens (30). Reuterin production is modulated by PocR, an AraC-like tran-
scriptional regulator present in the 57-gene pdu-cbi-hem-cob cluster. Inactivation of the

TABLE 1 MICs of Lactobacillus spp. indicate resistance to antibiotics associated with an
increased risk of development of CDI at clinically relevant concentrations

Strain Source

MICa (�g/ml)

Vancomycin Metronidazole Fidaxomicin

C. difficile R20291b CDI patient stool 4 2 0.5
L. casei LC-39 Infant feces 256 �256 2
L. gasseri LG-3 Infant feces 1 �256 2
L. rhamnosus LR-34 Infant feces 256 �256 2
L. reuteri 17938 Breast milk 256 �256 �32
L. reuteri 6475 Breast milk 256 128 �32
aAll results represent the minimum concentration of drug required to inhibit �90% of the growth of the
strains tested. The assay was completed in triplicate.

bThe MICs for C. difficile R20291 have been published previously (78).
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pocR gene inhibits both reuterin and vitamin B12 synthesis (31). We previously dem-
onstrated strain-dependent reuterin production by L. reuteri strains 17938 and 6475,
showing that the former strain produces 3-fold more reuterin (30, 32), leading us to
hypothesize that an L. reuteri strain with a greater capacity for reuterin production
would be more efficient at inhibiting C. difficile growth in vitro.

The strain-dependent effects of L. reuteri on C. difficile growth were evaluated using
an agar spot overlay assay optimized for reuterin production (32). We tested wild-type
L. reuteri strains 17938 and 6475 alongside isogenic pocR mutants 17938::pocR and
6475::pocR, which are incapable of producing reuterin (31), for activity against multiple
C. difficile strains and ribotypes, including clinically relevant isolates. Specifically, we
tested ribotype 027 C. difficile strains CD2015 and R20291, ribotype 087 strain VPI
10463, and ribotype 012 strain 630 (Fig. 2). A disc of vancomycin (5 �g) was included
as a positive control for inhibition of C. difficile growth. All C. difficile strains tested were
susceptible to wild-type L. reuteri strains 17938 and 6475. No inhibition of the growth
of the reuterin-deficient pocR mutants was seen, and inhibition of C. difficile was
restored and exceeded wild-type inhibition when strain 6475::pocR was complemented
with the wild-type pocR gene (6475::pocR/pJKS102) but not the empty vector (6475::
pocR/pJKS100) (Fig. 2A). To ensure that inhibition of C. difficile growth was not due to
other factors affected by the pocR mutation, we tested isogenic glycerol dehydratase
(gdh) mutants of L. reuteri 17938 and 6475. Glycerol dehydratase is the vitamin
B12-dependent enzyme located in the pdu-cbi-hem-cob cluster that converts glycerol to
reuterin (33, 34), and mutations in this gene do not affect expression of other genes in
the cluster. As expected, no inhibition of C. difficile growth by the reuterin-deficient gdh

FIG 2 Zones of inhibition show that L. reuteri inhibits C. difficile in a strain-specific and reuterin-
dependent manner in vitro. A vancomycin (Vanc) disc (5 �g) was placed and L. reuteri strains were
spotted and developed on BHI medium with 20 mM glucose. C. difficile strains were overlaid in BHI soft
agar containing 2% glycerol and incubated for growth. Clear zones of inhibition (in millimeters) were
measured. (A) Representative images of pathogen overlays showing clear zones where the growth of C.
difficile R20291 was inhibited. Wild-type L. reuteri strains 17938 and 6475, isogenic pocR insertion mutants
(17938::pocR and 6475::pocR), and complemented strains (pJKS100 is the vector control, pJKS102 is the
vector expressing the wild-type strain 6475 pocR gene) are shown. (B) Bar graph representing zone of
inhibition measurements for L. reuteri strains tested against C. difficile. Results represent the means �
SEMs (n � 3). Inhibitory zones significantly larger (unpaired, 2-tailed t test with equal variances) than the
zones for the corresponding vancomycin control, the 6475 wild type, or the 6475::pocR strain are
indicated (*, P � 0.05).
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mutants was seen (see Fig. S1 in the supplemental material). Differential inhibitory
activity between L. reuteri strains was observed, with strain 17938 exhibiting the
greatest inhibition of growth of all C. difficile strains tested compared to that by strain
6475 and the vancomycin control (P � 0.05) (Fig. 2B). Assays conducted in the absence
of glycerol did not result in C. difficile growth inhibition (data not shown). Taken
together, these data show that in the presence of glycerol, human-derived L. reuteri
strains have antimicrobial activity against C. difficile in vitro and reuterin production is
required for this phenotype.

Glycerol fermentation by L. reuteri 17938 prevents C. difficile invasion in
antibiotic-treated human fecal MBRAs. Fecal minibioreactor arrays (MBRAs) were
established by Robinson et al. (35) to model C. difficile invasion of antibiotic-disrupted
microbial communities. In this model, fecal samples from toxigenic C. difficile-negative
adult donors were inoculated into multiple continuous-flow MBRAs. After microbial
communities were allowed to establish in anaerobic culture, communities were dis-
rupted by antibiotic treatment and infected with C. difficile CD2015 (Fig. 3A). The MBRA
model of C. difficile infection was initially optimized using the clinically relevant isolate
CD2015 (ribotype 027). The antibiotic clindamycin predisposes intestinal microbial
communities to C. difficile invasion (36) and is used to disrupt the fecal MBRAs; those
not treated with clindamycin are resistant to C. difficile colonization (35). We utilized this
model to determine if the production of reuterin by L. reuteri could prevent C. difficile

FIG 3 Precursor-directed reuterin production by L. reuteri suppresses the growth of C. difficile in a human
fecal microbial community. (A) Time line depicting the experimental design of the MBRA experiments. (B)
Quantities of 16S rRNA gene copies of C. difficile relative to the total number of 16S rRNA gene copies
in bioreactor samples over time. Data are represented as means � SDs. Significant differences in relative
C. difficile 16S rRNA gene copy numbers over seven time points between the Ctrl and Lreu-Glyc groups
are indicated (repeated-measures ANOVA).
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invasion of an antibiotic-treated microbial community in MBRAs. Additionally, next-
generation sequencing of 16S rRNA genes and a global metabolomics approach were
employed to determine how the microbial communities in the MBRA model of C.
difficile infection compared to the microbial communities in patients with CDI.

We modified the MBRA model to study the effects of L. reuteri and reuterin
production on C. difficile invasion of antibiotic-treated microbial communities (Fig. 3A).
Specifically, we tested whether the addition of glycerol alone (Glyc), L. reuteri alone
(Lreu), or L. reuteri and glycerol together (Lreu-Glyc) altered the C. difficile invasion
dynamics compared to those achieved in untreated reactors (Ctrl). We monitored the
abundance of C. difficile relative to the total bacterial load in MBRAs using quantitative
PCR (qPCR) with primers specific to the C. difficile 16S rRNA gene and broad-spectrum
16S rRNA gene primers on days 9 to 15 (Fig. 3B) (data for day 9 were collected prior to
C. difficile CD2015 addition). We found that the overall levels of C. difficile in glycerol-
treated reactors with L. reuteri decreased significantly (they were �105-fold lower than
the levels in untreated reactors; P � 0.0084). L. reuteri treatment alone did not
significantly alter the C. difficile levels compared to those attained after the control
treatment, whereas glycerol alone resulted in �10-fold greater concentrations of C.
difficile, although this increase was not statistically significant. Furthermore, the direct
addition of reuterin to MBRAs had no effect on C. difficile growth (data not shown),
indicating the requirement of viable L. reuteri, substrate availability, and active reuterin
production for C. difficile growth inhibition.

Consistent with our results on the MBRA, ex vivo inhibition of C. difficile germination
and growth was observed in the cecal contents from germfree mice simultaneously
treated with L. reuteri and glycerol. The codelivery of L. reuteri and glycerol resulted in
an �104-fold suppression of the numbers of C. difficile CFU per milliliter (P � 0.01).
Treatment with phosphate-buffered saline (PBS), glycerol, or L. reuteri alone supported
the germination and growth of C. difficile ex vivo (Fig. S2).

Changes in microbial community dynamics in the MBRA in response to treat-
ments. To examine the effects of substrate-based L. reuteri supplementation on the
microbial community structure and composition, we sequenced the V3V5 variable
region of the 16S rRNA genes from DNA isolated from MBRA samples at days 2, 8, 11,
13, and 15. The sequences of the variable regions of microbial communities collected
before (day 2) and after (day 8) antibiotic treatment were compared to those of the
same variable regions from communities of stool samples from patients with CDI and
healthy control subjects published previously (37). In agreement with the findings of an
earlier MBRA characterization study (35), clindamycin treatment resulted in a 52% loss
(P � 0.0027, Mann-Whitney U test) in the number of observed species-level operational
taxonomic units (OTUs; clustered at �97% sequence identity), paralleling the findings
observed in specimens from patients treated with antibiotics (Fig. S3A). The OTUs lost
to clindamycin treatment in the MBRAs were distributed across multiple bacterial
families, similar to what we observed when we compared samples from healthy control
subjects and patients with CDI (Fig. S3B).

Longitudinal comparisons of 16S rRNA gene sequence data demonstrated coordi-
nated shifts in the structure of the microbial community from that of the initially
established communities (day 2) in response to antibiotic treatment and glycerol
supplementation. Overall changes in composition were assessed using Bray-Curtis
dissimilarities and visualized through nonmetric multidimensional scaling (NMDS) (Fig.
4A). Testing of the statistical significance of the differences in community structure
(using analysis of similarities [ANOSIM]) demonstrated that (i) the communities present
prior to antibiotic treatment were significantly different from those present following
antibiotic treatment (R � 1, P � 0.001) and (ii) treatment of reactors with glycerol for
a single day initiated a shift in the community structure compared to that in non-
glycerol-treated MBRAs after antibiotic treatment (R � 0.41, P � 0.009) (Fig. 4A;
compare the blue [Lreu-Glyc] and black [Glyc] circles to the green [Lreu] and maroon
[Ctrl] circles) that became more pronounced after longer growth in glycerol-containing
medium (R � 0.83, P � 0.001) (Fig. 4A; compare the maroon circles to the white
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inverted open triangles [day 11], black diamonds [day 13], and black squares [day 15]).
Comparison of OTU abundances between communities grown in the presence of
glycerol (Glyc and Lreu-Glyc) and those grown in the absence of glycerol (Ctrl and Lreu)
on each day in culture (days 8, 11, 13, and 15) revealed significant declines in two
abundant Bacteroides OTUs (OTU_3 and OTU_127) by day 8 in culture that decreased
further during prolonged cultivation in glycerol (P � 0.01, Mann-Whitney U test) (Fig.
4B; OTUs outlined in the teal box), as well as Bacteroides OTU_466 and Parabacteroides
OTU_576, which failed to expand in glycerol-treated cultures (P � 0.01, Mann-Whitney

FIG 4 Reuterin actively targets C. difficile with minimal consequences to the overall microbial community structure.
(A) Temporal analysis of microbial community composition and structure using the 16S rRNA gene sequence data
generated from bioreactor samples. Pairwise relationships between samples were determined using the Bray-Curtis
dissimilarity measure and plotted with nonmetric multidimensional scaling (NMDS). (B) Distribution of the
abundance of MBRA OTUs represented as a heatmap, with family-level classifications being represented by the
colored bars on the right. OTUs significantly differing in abundance between groups at each time point are labeled
on the left.
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U test) (Fig. 4B; OTUs outlined in the orange box). No statistically significant increases
in OTU abundance were observed in communities cultivated in the presence of
glycerol; rather, there was a trend toward an increased abundance of variable OTUs in
the Firmicutes phylum (Fig. 4B).

Somewhat surprisingly, the changes in community structure following treatment
with L. reuteri in the presence of glycerol were modest and not statistically significant
(R � 0.12, P � 0.131) (Fig. 4A; compare the blue [Lreu-Glyc] and black [Glyc]) symbols),
even though in the presence of glycerol L. reuteri exhibited potent antimicrobial activity
against C. difficile. Changes in community structure following treatment with L. reuteri
in the absence of glycerol were similarly modest and not statistically significantly
different from those in the presence of glycerol (R � 0.12, P � 0.17) (Fig. 4A; compare
the green [Lreu] and maroon [Ctrl] symbols). Comparison of OTU abundances between
communities treated with L. reuteri (Lreu and Lreu-Glyc) and those not treated with L.
reuteri (Ctrl and Glyc) on each day in culture following treatment (days 11, 13, and 15;
the day 8 sample was collected prior to treatment) revealed potentially significant
differences only on day 11 (P � 0.05, Mann-Whitney U test) just following the cessation
of L. reuteri administration. OTU_50 (Fig. 4B; outlined in the yellow box) classified to the
genus Lactobacillus, and its abundance increased significantly in treated samples on
day 11. OTU_50 was absent in the starting fecal material, it was most abundant in L.
reuteri-treated reactors at day 11 (Lreu-Glyc, 473 � 294 counts; Lreu, 380 � 170.2
counts), and its abundance quickly declined to less than 5 counts at days 13 and 15 in
the L. reuteri-treated groups following the cessation of treatment. The representative
sequence for OTU_50 had 98% identity to the L. reuteri sequence by BLAST analysis
against the sequences in the NCBI 16S rRNA database. Because continuous-flow
cultivation of L. reuteri alone (in the absence of fecal communities) in MBRA bioreactor
medium (BRM2) resulted in poor growth (2.5 � 106 CFU/ml) compared to the growth
after cultivation in a medium preferential for L. reuteri growth (deMan, Rogosa, Sharpe
[MRS] medium; �1 � 109 CFU/ml), it was not surprising that L. reuteri levels declined
quickly following the cessation of treatment.

To examine whether L. reuteri treatment in the presence of glycerol significantly
impacted the levels of any OTUs in addition to C. difficile, we compared the OTU
abundances in these treated reactors (Lreu-Glyc) to those in all other reactors (Ctrl, Lreu,
and Glyc) on days 11, 13, and 15. These comparisons identified a single OTU, OTU_768
(Fig. 4B; outlined in the red box), whose abundance was statistically significantly
different between these two populations (P � 0.017, Mann-Whitney U test) on days 11,
13, and 15. OTU_768, classified in the Peptostreptococcaceae family, was present in both
the untreated control group and the group treated with L. reuteri without glycerol
(22.3 � 18.6 counts) and was present at increased levels in the glycerol-grown
reactors (150 � 173.6 counts), and its levels were reduced to 0.1 � 0.3 count in the
glycerol-grown, L. reuteri-treated (Lreu-Glyc) MBRAs. The representative sequence of
OTU_768 had 99.2% identity to the C. difficile sequence by BLAST analysis against the
sequences in the NCBI 16S rRNA gene database, and its relative abundance patterns
between MBRA groups were consistent with the C. difficile qPCR results reported in Fig. 3B.

Metabolic profiling provides indirect evidence of reuterin production in
MBRAs. Global unbiased metabolomics analysis was used to determine whether
metabolic profiles and/or specific metabolites were associated with L. reuteri-mediated
suppression of C. difficile. After data processing and normalization, the Bray-Curtis
dissimilarity of normalized metabolite concentrations visualized through NMDS showed
that the overall changes in metabolic profiles (Fig. 5) were consistent with the shifts in
microbial communities (Fig. 4A), and the primary factors driving the greatest change in
both the microbial community composition and metabolomic profiles along NMDS axis
1 were antibiotic treatment and the addition of glycerol. The addition of glycerol to the
MBRAs significantly affected biochemical pathways important for glycerol metabolism;
the concentrations of glycerophospholipids and the corresponding monacyl- and
diacylglycerol derivatives positively correlated (Spearman rho [rs] � 0.61 to 0.95, P �

0.05) (Table 2) with metabolic shifts along NMDS axis 1 (Fig. 5, bottom).
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One arm of glycerol fermentation produces 1,3-propanediol via the transient reu-
terin (3-HPA) intermediate (38), as illustrated in Fig. 1. In L. reuteri, the 3-HPA interme-
diate accumulates for reasons that have yet to be elucidated. Although reuterin (3-HPA)
was not present in the global metabolite library and is unable to be detected directly
due to its high reactivity and transient nature, the primary by-product derived from

FIG 5 Global metabolomic changes correlate with glycerol fermentation and associated by-products.
(Top) Analysis of metabolic profiles from MBRAs using the normalized metabolite concentrations
generated by Metabolon. Pairwise relationships between samples were determined using the Bray-Curtis
dissimilarity measure and plotted with NMDS. (Bottom) Glycerol-associated metabolite concentrations
that positively correlated (Spearman rho [rs] � 0.6, P � 0.05) with NMDS axis 1 loadings.

TABLE 2 Spearman correlations of reuterin- and glycerol-associated metabolites to global
metabolite NMDS axis 1 loadings

Biochemicala Subpathway rs P valueb

1,3-Propanediol in reuterin pathway Chemical 0.765 1.271E	02

Biochemicals in glycerol
metabolism

1-Palmitoyl-2-oleoyl-GPC Phospholipid metabolism 0.952 7.892E	13
1-Palmitoleoyl-2-linoleoyl-GPE Phospholipid metabolism 0.897 2.167E	09
1-Palmitoylglycerol Monoacylglycerol 0.783 9.006E	06
Glycerophosphorylcholine Phospholipid metabolism 0.770 1.167E	04
1-Stearoyl-2-linoleoyl-GPC Phospholipid metabolism 0.801 1.327E	04
Palmitoyl-oleoyl-glycerol Diacylglycerol 0.675 4.877E	04
Trimethylamine N-oxide Phospholipid metabolism 0.668 5.937E	04
Choline phosphate Phospholipid metabolism 0.674 6.665E	04
Glycerol-3-phosphate Glycerolipid metabolism 0.643 1.079E	03
Choline Phospholipid metabolism 0.642 1.104E	03
Glycerophosphoethanolamine Phospholipid metabolism 0.831 3.872E	03
Glycerol Glycerolipid metabolism 0.736 5.007E	03
1-Palmitoyl-GPC Lysolipid 0.812 5.560E	03
1-Palmitoyl-2-linoleoyl-GPC Phospholipid metabolism 0.605 2.793E	02
1-Stearoyl-2-oleoyl-GPC Phospholipid metabolism 0.618 4.629E	02

aGPC, glycerophosphocholine; GPE, glycerophosphoethanolamine.
bBenjamin-Hochberg method-corrected P values.
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reuterin synthesis, 1,3-propanediol, was detected in reactors receiving glycerol (Lreu-
Glyc and Glyc). The Spearman correlations of the 1,3-propanediol concentrations to the
NMDS axis loadings showed that the presence of 1,3-propanediol positively correlated
with the global metabolite shift across NMDS axis 1 (rs � 0.77, P � 0.01) (Fig. 5, bottom),
providing indirect evidence that the reuterin pathway is active in MBRAs receiving
glycerol.

DISCUSSION

Here we show the integration of Lactobacillus and precursor-directed antimicrobial
therapy as a prototypical next-generation probiotic strategy targeting CDI. We dem-
onstrate that L. reuteri 17938, which is a commercially available probiotic strain cur-
rently undergoing a clinical trial in children receiving antibiotic therapy (39) and which
is also clinically indicated to reduce viral and bacterial diarrhea in children (40–42) and
respiratory and gastrointestinal (GI) disease in adults (43, 44), shows promise as
preventative therapy in patients with CDI when coadministered with glycerol. The
codelivery of L. reuteri and glycerol prevented C. difficile from establishing high con-
centrations in a number of antibiotic-treated microbial communities, and the suppres-
sion of C. difficile growth remained after the termination of L. reuteri supplementation.
Although reuterin is characterized as having broad-spectrum activity against a wide
variety of pathogens, the cumulative effects of reuterin production on microbial
community dynamics were virtually indistinguishable from the effects of glycerol alone.
The narrow-spectrum effects of reuterin on the microbial community structure are
supported in part by previous studies indicating less sensitivity by commensal families
of intestinal bacteria (21, 45). While C. difficile viability was notably diminished by
reuterin in our in vitro and ex vivo studies, in vivo efficacy studies are under way to
assess whether coadministration of L. reuteri and glycerol can be used to treat C. difficile
infections in vivo.

Success with adjunct probiotic therapy relies on maintenance of the viability of the
probiotic when it is paired with antimicrobial administration. Antimicrobial resistance
either can be acquired or is natural (intrinsic). The evolution of acquired bacterial
resistance is propagated through antibiotic exposure, which can force spontaneous
genetic mutations or the transfer of resistance genes via mobile genetic elements that
ensure bacterial survival. In an effort to comply with recommendations from the
European Union PROSAFE project that probiotics not harbor known antibiotic resis-
tance traits (46), L. reuteri 55730 was cured of two plasmids (pLR581 and pLR585) that
possessed the transferrable antimicrobial resistance genes tet(W) and lnu(A), resulting
in daughter strain L. reuteri 17938 (47). Upon plasmid removal, L. reuteri 17938 no
longer carried the transferrable resistance genes tet(W) and lnu(A) and retained all
known probiotic characteristics (47). Nontransferable intrinsic resistance is generally
common to all members of a species, is independent of antibiotic selective pressure
(48), and, therefore, is a desired phenotype in adjunct probiotic therapy (18). Parent
strain L. reuteri ATCC 55730 is intrinsically resistant to �-lactams (47), vancomycin (49,
50), metronidazole (51), and several other antibiotics to which resistance is collectively
shared within this species (52, 53). Intrinsic resistance to fidaxomicin has yet to be
documented, although little to no activity of fidaxomicin against Gram-negative aero-
bic and anaerobic bacteria is common (26). Susceptibility to fidaxomicin has been
demonstrated in some lactic acid bacteria (Enterococcus spp. and Lactobacillus casei).
However, the MIC for Lactobacillus acidophilus is similar to that for L. reuteri at �32
�g/ml (26), indicating that these species do not fall within the drug’s narrow spectrum
of activity. With the knowledge that fidaxomicin targets bacterial RNA polymerase (54)
and Lactobacillus spp. are usually naturally resistant to nucleic acid synthesis inhibitors
(18, 51), it is plausible that the high MIC values demonstrated by L. reuteri in this study
are due to intrinsic mechanisms.

Glycerol, a common dietary component, is used as a sweetener, solvent, thickener,
and preservative in pharmaceutical and food products and is a natural component of
triglycerides. Glycerol absorption primarily occurs in the small intestine, although
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unabsorbed glycerol, free fatty acids, and undigested glycerides do transit to the colon.
Gut microbes produce bacterial lipases that hydrolyze glycerides into free fatty acids
and glycerol (55). Other sources of colonic glycerol are luminal fat digestion, intestinal
clearing of endogenous plasma glycerol, desquamated epithelial cells, and luminal
microbial fermentation (20). Microbial fermentation of glycerol can occur by organisms
in the class Clostridia and the families Enterobacteriaceae and Lactobacillaceae and can
result in many products, including butyrate or 1,3-propandiol, that can either stimulate
or selectively inhibit glycerol absorption in the colon (38, 56, 57). Batch fermentation
studies have shown glycerol metabolism to be highly variable between human fecal
microbiota communities (58), and our own study emphasized glycerol-induced
changes to the microbial communities in the MBRAs. Here we clearly demonstrated
reuterin-dependent L. reuteri-mediated inhibition of C. difficile growth both in vitro and
ex vivo. Pathogen killing by reuterin relied on the immediate bioavailability of glycerol
to L. reuteri in close proximity with C. difficile.

In summary, our results show that probiotic strain L. reuteri 17938 is intrinsically
resistant to the antimicrobial drugs used to treat antibiotic-associated CDI and has
reuterin-mediated antimicrobial activity against C. difficile. The codelivery of L. reuteri
17938 and glycerol interferes with C. difficile growth within an antibiotic-treated human
fecal microbial community in vitro without significantly affecting the overall microbial
community composition. These findings indicate that substrate bioavailability may
represent an important patient variable and a determinant of efficacy in clinical
probiotic trials. Future efforts will be aimed at identifying the mechanisms evolved by
the gut microbiota to evade reuterin cytotoxicity and optimizing the delivery of L.
reuteri, targeting the site of infection with the intention of preventing recurrent
episodes, as adjunct therapy to antibiotics used to treat CDI.

MATERIALS AND METHODS
Bacterial strains and culture conditions. The strains used in this study are listed in Table S1 in the

supplemental material. Routine culturing of Lactobacillus spp. in deMan, Rogosa, Sharpe (MRS) medium
(Difco, Franklin Lakes, NJ) and C. difficile strains in brain heart infusion (BHI) medium (BD Biosciences,
Franklin Lakes, NJ) was carried out at 37°C in an anaerobic chamber (catalog number AS-580; Anaerobe
Systems, Morgan Hill, CA) supplied with a mixture of 10% CO2, 5% H2, and 85% N2 for 16 to 18 h.
Erythromycin (Erm; 10 �g/ml) or chloramphenicol (Cm; 10 �g/ml) was added when necessary for plasmid
or chromosomal insertion maintenance (Table S1). The specific culture conditions used for individual
experiments are detailed throughout.

Antibiotic susceptibility testing. The susceptibility of the Lactobacillus spp. to antibiotics was
determined using standard broth microdilution procedures (59). Briefly, bacteria (1 � 106 CFU/ml) were
inoculated into a 96-well plate containing serial dilutions of vancomycin (0.125 to 256 �g/ml), metro-
nidazole (0.125 to 256 �g/ml), or fidaxomicin (0.016 to 32 �g/ml) in MRS medium. The plates were
incubated anaerobically at 37°C for 24 h. Optical density measurements (600 nm) were recorded using
a Synergy H1 hybrid multimode microplate reader (BioTek Instruments, Inc., Winooski, VT). The results
were compared to those for a growth control (with lactobacillus and vehicle only), and the MIC endpoint
was the concentration of antibiotic at which a �90% reduction in growth (MIC90) was observed.
Significance was determined using Student’s t test with equal variance.

Pathogen inhibition assay. C. difficile susceptibility to reuterin was measured using an agar spot test
optimized to promote reuterin production by L. reuteri. Assays were performed as previously described
(32) with minimal modifications. Briefly, overnight cultures of L. reuteri were spotted (2 �l) onto BHI
medium supplemented with 20 mM glucose and developed by anaerobic incubation at 37°C for 24 h.
Overnight cultures of C. difficile strains were inoculated (107 to 108 cells/ml) in 7 ml soft agar (BHI broth,
2% glycerol, 0.7% technical agar), the C. difficile-inoculated soft agar was layered over the L. reuteri spots,
and the culture was incubated anaerobically at 37°C for 24 h. Clear zones of inhibition (�1 mm) around
each spot were scored. Significance was determined using Student’s t test with equal variance.

MBRA preparation and operation and sample collection. The Institutional Review Board from
Michigan State University reviewed and approved fecal sample collection. The effects of reuterin on C.
difficile growth in a human fecal microbial community were tested in minibioreactor arrays (MBRAs).
Replicate MBRAs (12 independent 15-ml reactors) and bioreactor medium (BRM2) were prepared as
previously described (60). The reactors were inoculated with an anaerobic preparation of a 25% fecal
slurry from an anonymous healthy donor (final concentration, 5% [wt/vol]) and were operated in an
anaerobic chamber with a 5% H2, 5% CO2, 90% N2 atmosphere. After 16 h of outgrowth in batch culture
mode, continuous-flow cultivation was initiated at a flow rate of 0.94 ml/h (retention time, 16 h). After
36 h of flow, the reactor communities were treated twice daily with clindamycin (final concentration, 500
mg/liter) for 4.5 days. The reactors were transitioned to fresh medium on day 4 of clindamycin treatment,
with six reactors receiving standard BRM2 and six reactors receiving BRM2 supplemented with glycerol
(final concentration, 10% [vol/vol]). The reactors were continued on the respective medium throughout
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the duration of the experiment. Thirteen hours after the cessation of antibiotic treatment, six reactors
were treated with L. reuteri 17938 (three reactors in BMR2 and three reactors in BRM2 plus glycerol),
prepared as described in “L. reuteri cultivation and dosing for MBRAs” below. L. reuteri treatment
continued twice daily for 3 days. After the first day of L. reuteri treatment, all 12 reactors were challenged
with �1 � 106 vegetative cells of C. difficile CD2015 (clinical ribotype 027) that had been propagated in
BRM2 prior to inoculation (35).

Samples (1 ml) were collected from each MBRA as described previously (35) prior to the initiation of
continuous flow and then daily through the duration of the experiment. Samples were centrifuged at
20,000 � g for 1 min, and then the supernatants and pellets were separated and stored at 	80°C.
Microbial community and metabolite analysis and quantification of C. difficile levels by quantitative PCR
(qPCR) were performed as described below.

L. reuteri cultivation and dosing for MBRAs. L. reuteri colonies growing anaerobically at 37°C on
MRS agar (�2 days) were inoculated into 10 ml of MRS broth and incubated anaerobically at 37°C for 8
to 12 h. Two 3-ml aliquots of culture were removed, concentrated by centrifugation for 5 min at 1,753 �
g, and washed in BRM2 or BRM2 plus 10% glycerol. Bacterial cell pellets were resuspended in 1 ml BRM2
or BRM2 plus 10% glycerol and incubated at 37°C anaerobically for 15 min prior to dosing of 300 �l into
reactors. Aliquots of the L. reuteri inocula were serially diluted, plated on MRS agar, and incubated
anaerobically overnight at 37°C to determine the number of CFU per milliliter of inoculum. The counts
were 5.2 � 4.2 � 109 CFU/ml and 3.4 � 3.9 � 109 CFU/ml for cultures incubated in BRM2 and BRM2 plus
glycerol, respectively.

Ex vivo germination and outgrowth studies in GI luminal contents. Animal protocols were
approved by the Baylor College of Medicine Institutional Animal Care and Use Committee. The suscep-
tibility of C. difficile to L. reuteri in mouse cecal contents was determined using methods similar to those
previously described (61, 62). Cecal content was harvested from germfree 7- to 10-week-old C57BL/6
male mice, resuspended 1:2 in PBS, and aliquoted into 200-�l samples. Each aliquot was inoculated with
C. difficile VPI 10463 spores (104/ml) and then treated with PBS, L. reuteri 17938 cells (107/ml), 10%
glycerol, or L. reuteri 17938 cells (107/ml) plus 10% glycerol. Suspensions were incubated anaerobically
at 37°C for 24 h. Samples were taken at 0 and 24 h, and C. difficile bacteria were quantified by overnight
culture on prereduced selective cycloserine-cefoxitin-fructose agar with sodium taurocholate (TCCFA)
medium. The percentage of spores was determined by dilution plating before and after heating to 65°C
for 20 min. Plates were incubated anaerobically for 48 h at 37°C. Significance was determined using
two-way repeated-measures analysis of variance (ANOVA) with the Bonferroni multiple-comparison
correction.

Microbial DNA extraction. DNA was extracted from samples from intestinal contents and MBRAs
using methods described previously, with modifications (63, 64). Briefly, samples were suspended in
preheated lysis buffer (65°C) and subjected to two cycles of homogenization using a BeadBlaster tissue
homogenizer (Benchmark Scientific, Melrose, MA) for 20 s at 6.00 meters/s. Remaining intact cells and
debris were pelleted by centrifugation for 5 min at 5,000 � g, and the supernatant was collected. An
additional 300 �l of preheated lysis buffer was added to the pellet, the homogenization and centrifu-
gation steps were repeated, and the supernatants were pooled. A mixture of ammonium acetate (final
concentration, 2 M) and pooled supernatant was incubated on ice for 10 min and then centrifuged at 4°C
for 10 min at 14,000 � g. The supernatant was collected and mixed with an equal volume of isopropanol,
and the mixture was incubated overnight at 	20°C. Precipitation, washing, and removal of RNA and
protein were performed as described by Yu and Morrison (63). DNA was purified using a Zymo Research
DNA Clean and Concentrator 25 kit (Irvine, CA) according to the manufacturer’s instructions and stored
at 	20°C until further analysis by 16S rRNA gene sequencing or qPCR.

Quantitation of C. difficile by qPCR. Real-time qPCR was used to determine the quantity of C.
difficile 16S rRNA gene copies relative to the total quantity of bacterial 16S rRNA gene copies in samples
from MBRAs or intestinal contents as previously reported (65–67). Template DNA was extracted as
described above, and 10 ng was used in reactions with SYBR green PCR master mix (Applied Biosystems,
Waltham, MA) according to the manufacturer’s instructions. Bacterial 16S rRNA gene primers were used
to assess the total bacterial 16S rRNA gene (forward primer, 5=-GCA GGC CTA ACA CAT GCA AGT C;
reverse primer, 5=-CTG CTG CCT CCC GTA GGA GT) (68) or C. difficile 16S rRNA gene (forward primer,
5=-TTG AGC GAT TTA CTT CGG TAA AGA; reverse primer, 5=-CCA TCC TGT ACT GGC TCA CCT) content (69).
Real-time quantification was carried out on an MJ Research PTC-200 thermocycler (Bio-Rad, Hercules,
CA) with cycling conditions of an initial cycle of 95°C for 5 min and then 41 cycles of 95°C for 20 s,
60°C for 1 min, and 84°C for 1 s, followed by a melting curve. The relative amount of the C. difficile
16S rRNA gene was calculated by the 2	ΔΔCT threshold cycle (CT) method (65–67). The significance
of the difference in the relative abundance of C. difficile between groups was determined using
repeated-measures ANOVA over 7 time points and pairwise comparisons of the results for three
treatments versus those for the control.

16S rRNA gene sequencing. Microbial DNA extracted as outlined above was sequenced as previ-
ously described by the Human Microbiome Project (70). Sequencing of the V3V5 region of the 16S rRNA
gene was accomplished on the 454 GSFLX platform (Roche) with the forward primer 357F (CCTACGGG
AGGCAGCAG) and adapter-tagged reverse primer 534R (CCGTCAATTCMTTTRAGT).

Microbiome analysis. The UPARSE (v8.1) (71) platform for 16S rRNA gene sequence analysis was
used to quality filter reads and de novo cluster sequences into operational taxonomic units (OTUs) at 97%
sequence identity. The reads were filtered according to quality by the maximum number of expected
errors (E_max) of 0.5 and trimmed to a length of 250 bp, and singletons were discarded. The diversity
and composition of the bacterial community were evaluated using the QIIME (v1.8) (72) sequence
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analysis platform. Assignment of the taxonomy of a representative sequence for each OTU was com-
pleted using the UCLUST consensus taxonomy classifier algorithm and the Greengenes reference
database (v13.8). Libraries were randomly subsampled to a depth of 2,300 sequences prior to the
calculation of diversity metrics or assessment of the differences in the relative abundances of taxons.
Significant differences in alpha diversity and OTU abundances were assessed using the Mann-Whitney U
test. Differences in OTU abundances across treatment conditions were calculated for each culture day
independently. Bray-Curtis dissimilarities were calculated from untransformed abundance data using the
vegan package in R. Stable nonmetric multidimensional scaling (NMDS) coordinates were determined
with the metaMDS function (in R) and plotted in R. The significance of changes in community
structure between treatment groups (before clindamycin treatment, following clindamycin treat-
ment, following clindamycin treatment and treatment with L. reuteri, following clindamycin treat-
ment and treatment with glycerol, and following clindamycin treatment and treatment with glycerol
plus L. reuteri) was evaluated by analysis of similarities (ANOSIM), calculated using the mothur
(v1.36.1) program (79). In addition to the Greengenes classification outlined above, specific repre-
sentative OTU sequences of interest were analyzed by BLASTn analysis against the sequences in the
NCBI 16S Microbial database to determine the top hit.

Measurement of metabolite composition of MBRA supernatants. Supernatants generated from
the MBRA experiments were shipped on dry ice to Metabolon, Inc., for metabolite quantification as
described previously (73, 74). The supernatants (100 �l) used for extraction were prepared using a
MicroLab Star automated system (Hamilton Company). A recovery standard was added before the
extraction process for quality control (QC) purposes. Samples were extracted using an aqueous methanol
extraction process to remove the protein fraction while allowing the maximum recovery of small
molecules. The resulting extract was divided into fractions for analysis by ultraperformance liquid
chromatography (UPLC)-tandem mass spectroscopy (MS/MS) (75) in the positive mode and by UPLC-
MS/MS (75) in the negative mode. Samples were placed briefly on a TurboVap concentration evaporator
workstation (Zymark) to remove the organic solvent. Each sample was then frozen and dried under
vacuum and prepared to run on the UPLC-MS/MS (75).

Extracted samples were processed as described previously (76, 77). For quality assurance (QA)/QC,
additional samples were included with the experimental samples in each day’s analysis. Samples used for
QC were spaced evenly among the injections, and all experimental samples were randomly distributed
throughout the run. A selection of compounds for QC analysis was added to every sample for
chromatographic alignment, including those being tested.

Raw data were extracted, and the peak was identified and processed for QC using Metabolon’s
hardware and software. Metabolon maintains a library based on authenticated standards that contain the
retention time/retention index (RI), mass-to-charge ratio (m/z), and chromatographic data (including
MS/MS spectral data) on all molecules present in the library. Biochemical identifications are based on
three criteria: the retention index within a narrow RI window of the proposed identification, a nominal
mass match to the library �0.2 atomic mass unit, and the MS/MS forward and reverse scores between
the experimental data and authentic standards. MS/MS scores are based on a comparison of the ions
present in the experimental sample spectrum to the ions present in the library spectrum. While there
may be similarities between these molecules on the basis of one of these factors, the use of all three data
points can be used to distinguish and differentiate biochemicals. More than 2,400 commercially available
purified standard compounds have been acquired and registered in the Laboratory Information Man-
agement System for determination of their analytical characteristics.

Metabolomic data analysis. Metabolite abundance data were processed to (i) remove metabolites
with �10% missing values across all samples, (ii) impute missing values with 10% of the minimum
observed value for each metabolite, and (iii) determine the minimum and maximum values and the
difference between maximum and minimum values for each metabolite for minimum-maximum value
normalization. Bray-Curtis dissimilarities were calculated from normalized metabolite abundance data
using the vegan package in R (80). Stable NMDS coordinates were determined with metaMDS (in R) and
plotted in R. Spearman correlations with P values were calculated for the metabolites against NMDS axis
loadings using the rcorr package in RStudio. To control for the false discovery rate, the P values were
corrected for multiple testing by the Benjamini-Hochberg method. Statistically significant biochemicals
(corrected P � 0.05) with a Spearman rho (rs) value of �0.6 were analyzed further.

Statistics. Results are presented as mean values � standard deviations (SDs), mean values �
standard errors of the means (SEMs), or a median rank, as indicated in the figure legends. Statistical
significance was determined using the t test, repeated-measures ANOVA, the Mann-Whitney U test, the
Kruskal-Wallis test, ANOSIM, and the Spearman correlation with correction for multiple testing where
indicated; the precise test is specified where appropriate. Three biological replicates were assayed unless
otherwise stated; a P value of �0.05 was considered statistically significant.

Accession number(s). The sequences (Table S2) have been deposited with the NCBI Short Read
Archive under BioProject accession number PRJNA395577.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/IAI
.00303-17.
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