82 research outputs found

    Analysis of Circular Economy Research and Innovation (R&I) intensity for critical products in the supply chains of strategic technologies.

    Get PDF
    To develop renewable energy, digital, space and defence technologies, the European Union (EU) needs access to critical raw materials of which a large share is currently imported from third countries. To mitigate the risk of supply disruptions, the Critical Raw Materials Act proposes to diversify sources of imports, while increasing domestic extraction, processing, and recycling. The circular economy is therefore positioned as a key element of the EU strategy to deploy strategic technologies for navigating the sustainability transition in a complex geopolitical landscape. In line with this position, the present study analyses the intensity of circular economy research and innovation (R&I) in the supply chains of strategic technologies. The focus is placed on four critical products containing raw materials having high supply risks: lithium-ion battery cells; neodymium-iron-boron permanent magnets; photovoltaic cells; hydrogen electrolysers and fuel-cells. The R&I analysis is based on the identification of scientific articles, patents, and innovation projects on the subject, with a global scope, in the period between 2014 and 2022. The analysis is enriched by connecting to parallel work on the subject, conducted by Joint Research Centre (JRC) as well as academic institutions, industry, and policy stakeholders. This is functional to provide insight into: where circularity efforts R&I have been placed in terms of different products and supply chains; which countries are undertaking these efforts; how the EU is positioned and how much funding was deployed so far; what are the current gaps and trends going forward. Main insights include the following: 1) circularity R&I for critical products is not balanced, with a prominent focus placed on Li-ion cells on a global level 2) the EU has followed this trend in terms of number of innovation projects and public spending; 3) Next to EU efforts, China and the USA focus intensely on circular economy R&I as well. This study contributes with evidence to advance scientific research and policymaking on the role of a circular economy to achieve open strategic autonomy and climate neutrality in the EU

    Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment

    Get PDF
    The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios

    Mineralogy and leachability of gasified sewage sludge solid residues

    No full text
    International audienceGasification of sewage sludge produces combustible gases as well as tar and a solid residue as by-products. This must be taken into account when determining the optimal thermal conditions for the gasification process. In this study, the influence of temperature, heating atmosphere and residence time on the characteristics of the gasified sewage sludge residues is investigated. ICP-AES analyses reveal that the major chemical elements in the char residues are phosphorus, calcium, iron and silicon. Heavy metals such as copper, zinc, chromium, nickel and lead are also present at relatively high levels - from 50 to more than 1000 mg/kg of dry matter. The major mineral phases' identification - before and after heating as well as their morphology and approximate chemistry (XRD and SEM-EDX) demonstrate that a number of transformations take place during gasification. These are influenced by the reactor's temperature and the oxidative degree of its internal atmosphere. The copper-, zinc- and chromium-bearing phases are studied using chemometric tools, showing that the distribution of those metals among the mineral phases is considerably different. Finally, batch-leaching tests reveal that metals retained in the residue are significantly stabilized after thermal treatment to a higher or lower extent, depending on the thermal conditions applied

    The Distribution of Heavy Metals Following Sewage Sludge Gasification

    No full text
    International audienceLimited knowledge exists about the fate of inorganic components, and especially metallic species, present in sewage sludge, upon gasification. This study shows that major elements are mainly retained within the sludge char, whereas minor elements such as Cd, Pb, Zn, As and Hg are partially or completely lost due to volatilization or melting from the sludge matrix. Hence, this work stresses the importance of monitoring the metal distribution during the gasification process
    • …
    corecore