225 research outputs found

    Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence

    Get PDF
    Bis-(3 ',5 ') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K-d similar to 2 mu M). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence

    Established but not spreading: the tropical invasive snail Melanoides tuberculata in a geothermally warmed channel in temperate Southern Pampas

    Get PDF
    Abstract Melanoides tuberculata is a freshwater snail native to Old World tropical areas but has invaded tropical and subtropical regions around the world. In Argentina, populations established in natural environments were reported from northeastern tropical provinces. Here we report for the first time the presence of M. tuberculata in a geothermally warmed channel in temperate Southern Pampas. We mapped its distribution in the channel, searched for its presence in five nearby basins, estimated the risk of establishment and expansion in Argentina with distribution models and analyzed shape variation through geometric morphometrics. Melanoides tuberculata was recorded exclusively in the channel in sites with temperatures between 20 and 40°C, with almost no overlap with other snails. No evidence of M. tuberculata was found in nearby basins. The distribution model predicted that only northernmost areas from Argentina are suitable for this species, where it could impact snail communities and food webs if introduction through the aquarium trade is not prevented. The absence of males indicates parthenogenetic reproduction and probably a recent invasion. Shell shape variation in this population, 15 % of which is attributable to allometry, encompasses the shapes of specimens from other South American populations, suggesting that all belong to the same lineage

    A Detailed Analysis of the Murine TAP Transporter Substrate Specificity

    Get PDF
    The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though murine systems are widely used for basic studies of antigen processing and presentation.We performed a detailed experimental analysis of murine TAP binding specificity by measuring the binding affinities of 323 peptides. Based on this experimental data, a computational model of murine TAP specificity was constructed. The model was compared to previously generated data on human and murine TAP specificities. In addition, the murine TAP specificities for known epitopes and random peptides were predicted and compared to assess the impact of murine TAP selectivity on epitope selection.Comparisons to a previously constructed model of human TAP specificity confirms the well-established differences for peptide substrates with positively charged C-termini. In addition these comparisons show that several residues at the N-terminus of peptides which strongly influence binding to human TAP showed little effect on binding to murine TAP, and that the overall influence of the aminoterminal residues on peptide affinity for murine TAP is much lower than for the human transporter. Murine TAP also partly prefers different hydrophobic amino acids than human TAP in the carboxyterminal position. These species-dependent differences in specificity determined in vitro are shown to correlate with the epitope repertoire recognized in vivo. The quantitative model of binding specificity of murine TAP developed herein should be useful for interpreting epitope mapping and immunogenicity data obtained in humanized mouse models

    C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation

    Get PDF
    In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30

    The Internal Sequence of the Peptide-Substrate Determines Its N-Terminus Trimming by ERAP1

    Get PDF
    Background: Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini. Methodology/Principal Findings: In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme's substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme's active site. This model can readily account for the strong preference for positively charged side chains. Conclusions/Significance: To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide's length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo

    Medical treatment of prolactinomas.

    Get PDF
    Prolactinomas, the most prevalent type of neuroendocrine disease, account for approximately 40% of all pituitary adenomas. The most important clinical problems associated with prolactinomas are hypogonadism, infertility and hyposexuality. In patients with macroprolactinomas, mass effects, including visual field defects, headaches and neurological disturbances, can also occur. The objectives of therapy are normalization of prolactin levels, to restore eugonadism, and reduction of tumor mass, both of which can be achieved in the majority of patients by treatment with dopamine agonists. Given their association with minimal morbidity, these drugs currently represent the mainstay of treatment for prolactinomas. Novel data indicate that these agents can be successfully withdrawn in a subset of patients after normalization of prolactin levels and tumor disappearance, which suggests the possibility that medical therapy may not be required throughout life. Nevertheless, multimodal therapy that involves surgery, radiotherapy or both may be necessary in some cases, such as patients who are resistant to the effects of dopamine agonists or for those with atypical prolactinomas. This Review reports on efficacy and safety of pharmacotherapy in patients with prolactinomas

    Somatostatin and dopamine receptors as targets for medical treatment of Cushing's Syndrome

    Get PDF
    Somatostatin (SS) and dopamine (DA) receptors are widely expressed in neuroendocrine tumours that cause Cushing's Syndrome (CS). Increasing knowledge of specific subtype expression within these tumours and the ability to target these receptor subtypes with high-affinity compounds, has driven the search for new SS- or DA-based medical therapies for the various forms of CS. In Cushing's disease, corticotroph adenomas mainly express dopamine receptor subtype 2 (D2) and somatostatin receptor subtype 5 (sst5), whereas sst2is expressed at lower levels. Activation of these receptors can inhibit ACTH-release in primary cultured corticotroph adenomas and compounds that target either sst5(pasireotide, or SOM230) or D2(cabergoline) have shown significant efficacy in subsets of patients in recent clinical studies. Combination therapy, either by administration of both types of compounds separately or by treatment with novel somatostatin-dopamine chimeric molecules (e.g. BIM-23A760), appears to be a promising approach in this respect. In selected cases of Ectopic ACTH-producing Syndrome (EAS), the sst2-preferring compound octreotide is able to reduce cortisol levels effectively. A recent study showed that D2receptors are also significantly expressed in the majority of EAS and that cabergoline may decrease cortisol levels in subsets of these patients. In both normal adrenal tissue as well as in adrenal adenomas and carcinomas that cause CS, sst and DA receptor expression has been demonstrated. Although selected cases of adrenal CS may benefit from sst or DA-targeted treatment, its total contribution to the treatment of these patients is likely to be low as surgery is effective in most cases

    Management of acromegaly in Latin America: expert panel recommendations

    Get PDF
    Although there are international guidelines orienting physicians on how to manage patients with acromegaly, such guidelines should be adapted for use in distinct regions of the world. A panel of neuroendocrinologists convened in Mexico City in August of 2007 to discuss specific considerations in Latin America. Of major discussion was the laboratory evaluation of acromegaly, which requires the use of appropriate tests and the adoption of local institutional standards. As a general rule to ensure diagnosis, the patient’s GH level during an oral glucose tolerance test and IGF-1 level should be evaluated. Furthermore, to guide treatment decisions, both GH and IGF-1 assessments are required. The treatment of patients with acromegaly in Latin America is influenced by local issues of cost, availability and expertise of pituitary neurosurgeons, which should dictate therapeutic choices. Such treatment has undergone profound changes because of the introduction of effective medical interventions that may be used after surgical debulking or as first-line medical therapy in selected cases. Surgical resection remains the mainstay of therapy for small pituitary adenomas (microadenomas), potentially resectable macroadenomas and invasive adenomas causing visual defects. Radiotherapy may be indicated in selected cases when no disease control is achieved despite optimal surgical debulking and medical therapy, when there is no access to somatostatin analogues, or when local issues of cost preclude other therapies. Since not all the diagnostic tools and treatment options are available in all Latin American countries, physicians need to adapt their clinical management decisions to the available local resources and therapeutic options

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism
    corecore