11,727 research outputs found

    Kinematic stability of roller pairs in free rolling contact

    Get PDF
    A set of generalized stability equations was developed for roller pairs in free rolling contact. A symmetric, dual contact model was used. Four possible external contact profiles that possess continuous contacting surfaces were studied. It was found that kinematic stability would be insured if the larger radius of transverse curvature, in absolute value, and the smaller rolling radius both exist on the roller that has the apex of its conical surface outboard of its main body. The stability criteria developed are considered to be useful for assessing axial restraint requirements for a variety of roller mechanisms and in the selection of roller contact geometry for traction drive devices

    Maximum life spiral bevel reduction design

    Get PDF
    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives

    Roller bearing geometry design

    Get PDF
    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given

    Maximum life spur gear design

    Get PDF
    Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application

    O VI and Multicomponent H I Absorption Associated with a Galaxy Group in the Direction of PG0953+415: Physical Conditions and Baryonic Content

    Get PDF
    We report the discovery of an O VI absorption system at z(abs) = 0.14232 in a high resolution FUV spectrum of PG0953+415 obtained with the Space Telescope Imaging Spectrograph (STIS). Both lines of the O VI 1032, 1038 doublet and multicomponent H I Lya absorption are detected, but the N V doublet and the strong lines of C II and Si III are not apparent. We examine the ionization mechanism of the O VI absorber and find that while theoretical considerations favor collisional ionization, it is difficult to observationally rule out photoionization. If the absorber is collisionally ionized, it may not be in equilibrium due to the rapid cooling of gas in the appropriate temperature range. Non-equilibrium collisionally ionized models are shown to be consistent with the observations. A WIYN survey of galaxy redshifts near the sight line has revealed a galaxy at a projected distance of 395 kpc separated by ~130 km/s from this absorber, and three additional galaxies are found within 130 km/s of this redshift with projected separations ranging from 1.0 Mpc to 3.0 Mpc. Combining the STIS observations of PG0953+415 with previous high S/N GHRS observations of H1821+643, we derive a large number of O VI absorbers per unit redshift, dN/dz ~20. We use this sample to obtain a first estimate of the cosmological mass density of the O VI systems at z ~ 0. If further observations confirm the large dN/dz derived for the O VI systems, then these absorbers trace a significant reservoir of baryonic matter at low redshift.Comment: Accepted for publication in Ap.J., vol. 542 (Oct. 10, 2000

    On Characterizing the Data Access Complexity of Programs

    Full text link
    Technology trends will cause data movement to account for the majority of energy expenditure and execution time on emerging computers. Therefore, computational complexity will no longer be a sufficient metric for comparing algorithms, and a fundamental characterization of data access complexity will be increasingly important. The problem of developing lower bounds for data access complexity has been modeled using the formalism of Hong & Kung's red/blue pebble game for computational directed acyclic graphs (CDAGs). However, previously developed approaches to lower bounds analysis for the red/blue pebble game are very limited in effectiveness when applied to CDAGs of real programs, with computations comprised of multiple sub-computations with differing DAG structure. We address this problem by developing an approach for effectively composing lower bounds based on graph decomposition. We also develop a static analysis algorithm to derive the asymptotic data-access lower bounds of programs, as a function of the problem size and cache size

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Lattice QCD study of a five-quark hadronic molecule

    Full text link
    We compute the ground-state energies of a heavy-light K-Lambda like system as a function of the relative distance r of the hadrons. The heavy quarks, one in each hadron, are treated as static. Then, the energies give rise to an adiabatic potential Va(r) which we use to study the structure of the five-quark system. The simulation is based on an anisotropic and asymmetric lattice with Wilson fermions. Energies are extracted from spectral density functions obtained with the maximum entropy method. Our results are meant to give qualitative insight: Using the resulting adiabatic potential in a Schroedinger equation produces bound state wave functions which indicate that the ground state of the five-quark system resembles a hadronic molecule, whereas the first excited state, having a very small rms radius, is probably better described as a five-quark cluster, or a pentaquark. We hypothesize that an all light-quark pentaquark may not exist, but in the heavy-quark sector it might, albeit only as an excited state.Comment: 11 pages, 15 figures, 4 table

    Geometric and combinatorial realizations of crystal graphs

    Full text link
    For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For affine type A, we extend the Young wall construction to arbitrary level, describing a combinatorial realization of the crystals in terms of new objects which we call Young pyramids.Comment: 34 pages, 17 figures; v2: minor typos corrected; v3: corrections to section 8; v4: minor typos correcte
    • …
    corecore