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Summary

The rollers in a rollina eleren: roller bearina tend to skew as they roll
around the inner race of the bearino. This tendency is a disadvantace of the
bearina. High speed turhine bearinos have a lenath to diameter ratio of close to
one. With this ratio and snall clearances between race shoulders and the rollers,
a restoring moment is provided at the edaes of the roller ends which restrains the
roller from skewing. The cace also provides some resistance to the roller
skewino through its contact with the roller.

The development of a new high speed, 1ichtly loaded cylindrical roller
bearing is the noal of this work. A kinematic and kinetic study is presented
for the effects of cylindrical roller bearing contact ceometry on the téndency
of the rollers to become skewed. Mew roller race ceometries are identified
which will significantly reduce this skewino tendency. The end use anplication
pertains to hich speed turbine bearines which carrv a lioht radial lead but
which must operate at increasinclv hicher sneeds.

Twelve basic bearing modification desions are identified and modeled in
this report. Four of these have sinole transverse convex curvature in their
rollers while eight have rollers which have compound transverse curvature made
up of a central cylindrical band surrcounded by svmmetric hands with slone and
transverse curvature.

The bearing designs are modeled for restorinc toroue per unit axial dis-
placement, contact stress capacity and contact area includino dynamic loading,
misalignment sensitivitv and roller proportion. Desian proarams are available
which size the sinale transverse curvature roller desiaons for a series of
roller slopes and load separations and which desion the comnhound roller
bearinos for a series ¢f slopes and transverse radii of curvature. The com-
nound rollers are pronortioned to have eanual contact stresses and minirum

size. Designed examples are also aiven.



Introduction

The rollers in a rolling element roller bearing tend to skew as they roll
around the inner race of the bearing. This tendency is a disadvantage of the
bearing. Thus needle bearings are normally used in low speed and high shaft
alignment situations [1,2]*. Higher speeds have resulted in caged roller
bearings with shoulders on one of the races to guide the rollers. High speed
turbine bearings have a length to diameter ratio of close to one. With this
ratio and small clearances between race shoulders and the rollers, a restoring
moment is provided at the edges of the roller ends which restrains the roller
from skewing. The cage also provides some resistance to the roller skewing
through its contact with the roller.

This roller skewing is primarily caused by a dynamic roller imbalance
which can be appreciable at the high roller speeds inherent in operation at
2,000,000 DN.

The skewing of rolling elements is a problem which is not restrictec :o
roller bearings. The skewing of flat belts on their pulleys was a problem
encountered a century ago which was solved by crowning the pulleys to make
the belts crawl up to the center of the pulleys [3]. The solution was based
on the elastic nature of the belts in that the restoring moment was due to a
tensile gradient in the belt tension across its width. In the centerless
grinding process the rolling axis of the workpiece and the grinding wheel are
deliberately skewed to each other to cause the workpiece to feed through the
grinder [4]. Indeed this is a major problem in needle bearings in that a
shaft slope at the bearings tends to push the needles out of the bearing.‘
This is also a problem in traction drives [5,6] where largz thrust forces

* Numbers in brackets denote references in the bibliography.
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are required to hold the rolling cylinders in place. The magnitudes of these
forces have been studied in the case of a high speed, lightly-loaded cylindrical
roller bearing [7]. The effects of shaft misalignment on the roller load
distribution has also been studied [8]. Finally the wheel-rail interaction of
railroad car wheel-sets with the rails has plagued designers for a long time
[9,10,11]. The wheel-set is a rigid rolling cylinder on the rails which com-
prise a race of infinite radius. Flanges are needed on the wheels to provide
the significant side forces required to accelerate the cars through the various
turns in the road. However, it has been found that the slope of the flanges
significantly affects the rolling of the wheels on the rails. Wheels which
have a cone apex outside the body of the train are used in order to prevent the
wheels from skewing as the train travels along the track. These cones produce
a kinematic resistance to skewing which the reverse cones with the flange on
the outside would not provide.

A recent investigation by the first author [6] has quantified a kinematic
criterion for the axial stability of external contact rollers in dry free-
rolling cylindrical contact. The axial instability of a roller is a direct
consequence of its skewing. Thus the problem of axial stability and roller
skewing are inter-related strongly. This analysis indicated that the intro-
duction of axially symmetric shapes on the rollers and one race will provide a
kinematic correcting mechanism for roller skewing.

The development of a new high speed, 1ightly loaded cylindrical roller
bearing is the goal of this work. A kinematic and kinetic study is presented
for the effects of cylindrical roller bearing contact geometrv cn the tendency
of the rollers to become skewed. New roller race geometries arc identified
which will significantly reduce this skewing tendency. The end use application

pertains to high speed turbine bearings which carry a light radial load but



which must operate at increasingly higher speeds.

A kinematic stability criterion is investigated and defined. It is
applied to determine the basic bearing geometries which provide kinematic
stabilization through one race while allowing free axial motion at the other.
These bearings all have one straight race and one contoured race. Two levels
of roller complexity are considered. The first is a simple roller with a
single transverse convex curvature. There are four bearing geometries which
use this roller. The second is a compound roller with a central band of
constant radius. This radius is the largest radius of the roller. This cen-
tral band is flanked by two symmetric bands with transverse curvature. The
roller transverse curvature may be convex, straight or concave. Eight
additional bearing geometries may employ these compound rollers. Models are
also derived for the degree of kinematic stabilization available from a
particular geometry, the basic capacity of a roller for that geometry at high
speed and the sensitivity of the particular geometry to shaft slope or mis-
alignment at the bearing.

Two basic design programs are presented. The first is for the bearing
geometries which use the simple rollers. This program proportions the roller
for a given length to diameter ratio, load spread factor and half cone angle.
The program then anaiyzes the bearing for its contact stresses, restoring tor-
que and misalignment sensitivity. The second program is for the compound
roller geometries. This program proportions the roller load spread factor and
length to diameter ratio tc equalize and minimize the contact stresses. This
program also analyzes its designed bearings for contact stress, restoring tor-
que and bearing geometry. Design examples are given to iliustrate the use of

these programs.
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Stability Theory

The basic model for rolling contact in a cylindrical roller bearing
assumes that no skewing can take place since the axes of the rollers and
races remain parallel. It further assumes that the races and the roller are
perfect cylinders with constant radii along the length of their axes. Thus
a single plane rolling model is used. This model is valid as long as the
axes remain parallel.

In reality, the rolling surfaces are not uniform. The axes are not per-
fectly parallel. And roller contact occurs in more than one plane. The actual
contact is thus not pure rolling but a complex combination of rolling and
sliding across the face of the roller.

To establish the primary cause of skewing, this contact is modeled in two
planes instead of the single plane of the basic roller model. This two plane
model allows for rolling and siiding at the individual planes and a resultant
generation of a skewing torque due to variations in rolling geometry from one
plane to the other.

In this model consider roller a to be the rolling element, roller b to
be the inner race and roller ¢ to be the outer race of the bearing. The races
rotate about fixed axes with no axial motion. Plane 1 is at the small end of
the rolling element roller a. For equal and opposite slip in the two planes,
the radius at which true rolling would occur is the average of the two rolling
radii of roller a.

Figure 1 illustrates the rolling contact of the rolling element with the
inner race. As shown in the velocity drawing, roller b slips ahead of roller a

at the contact point in plane 1 while the relative velocity is reversed in
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Roller - Inner Race Skewing
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plane 2 and rollera slips ahead of roller b. These two skidding velocities
produce a counterclockwise tractive couple on roller a which tends to push
its plane 1 into the paper and pull its plane 2 out of the paper. This
skewing turns the relative velocity of the center of roller a with respect to
roller b slightly towards plane 1. The axial component of this velocity is
thus an axial motion of roller a on roller b. If this motion decreases the
ratio lr'.'b/vr']a and increases the ratio er/rZa, the skidding velocities will

be reduced and even reversed when r,_ and ryp Pass the mean value. Assuming

la
this antisymetric behavior, the total stability or tendency to self correct

without external forces can be measured by the inequality

,
) 1b
5; (;;;ﬁ <0 (1)

where z measures the axial motion of roller a and is positive for motion
toward plane 1 [6].

In a similar fashion, figure 2 illustrates the rolling contact of the
rolling element with the outer race. As shown in the velocity drawing, roller ¢
slips ahead of roller a in plane 1 and slips behind roller a in plane 2. The
sliding tendency is not as great in this case since both centers of rotation
are one the same side of the pitch point. However, it is still there and in
the same direction as in the previous case. For the same direction of
rotation of the race ¢ in this case as that of the race b in the previous case,
the angular velocity of the roller a reverses but the relative velocity of its
center with respect to the race is also out of the paper. Thus a similar
counterclockwise tractive torque produces the same skewing and axial motion
toward plane 1 - the small end of the roller. If this motion decreases the

ratio r]c/r and increases the ratio rZC/r2a the skidding velocities will be

1a
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reduced as before. An equivalent stabili.v criterion can thus be stated as

r
) 1c
3 (1% <o (2)
az Ma

Inner Race Stability

The stability or self correcting action of the roller with the inner race
is determined by applying the criterion of equation 1 to the possible transverse
profiles for the roller and inner race. These profiles must be axially symmetric
about the center plane of the roller and inner race. They must also afford
only one contact point between the roller and race on each side of this center
plane. The geometric combinations that satisfy this are:

1) convex - convex

2) convex - straight, and

3) convex - concave.

In these three cases, the rolling element may be either the first or
second item. A fourth corbination must be included which does not possess
two definite contact points in order to iuclude present bear'ngs. That is:

4) straight - straight.

Prior to *his study in "Kinematic Stability of Roller Pairs in Free
Rolling Contact" by M. Savage and S. H. voewenthal [6], this kinematic
stability of two rollers was studied. In this study e refers to the roiler
with the apex of its cone of transverse geometry outside the roiler for a
positive slope of transverse curvature. The radii ov transverse curvature
for these rollers are denoteu by o where p is positive for convex curvature
and negative for concave curvature. Table 1 summarizes the stability
conditvions for rollers in free rolling contact where bocth rolling
surfaces are un the outside of their respective cylinders. This contact is

of external - external allers.



Geometry

e - outside apex

d - outside apex

convex - convex ;;§-< 53 ;;i- Ei

convex - straight yes no

convex - concave yes no

straight - straight le 1 _;g;>‘]
"d "d

Axial Stability of External - External Rollers

Table 1
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The results for straight - straight rollers were derived with the assumption
that the contact point stays at the center of the overlapped region of straight
cones. The validity of this assumption was questioned in the present study.

As the roller shifts axially its axis tilts slightly in the plane of the two
axes. This motion should cause the straight - straight geometry to contact
at the edges of the contact surfaces. Thus one of the contacting radii would
remain constant in each plane.

The geometry shown in Figure 3 shifts the surfaces of roller d onto the right
edgesof roller e. Since the two fixed radii of roller e in planes 1 and 2 are
unequal, the compensating effects of equalizing rolling radii cannot occur.

The same would be true if the roles were reversed and the surfaces of rolier e
rode across the edges of roller d. Thus if the assumption of central contact
is invalid and edge contact occurs, straight sided rollers are at best neutrally
stable in the non-tapered condition and are unstable in any tapered situation.

Table 2 shows these results in a form more easily applied to the
bearing design problem at hand. In this expanded table, roller a is the
rolling element and roller b is the inner race of the bearing. The cone
angle of transverse curvature, a, is considered positive if the cone radius

of roller a is outside of the roller as is the case for roller e in figure 3.

Quter Race Stability

In a similar fashion, the stability of the roller with the outer race is
determined by applying the criteria of equation 2 to the transverse
profiles. These profiles must be axially symmetric about the center plane of
the roller and outer race. They must also afford only one contact point between

the roller and race on each side of this center plane. Each comiination must
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l a b
‘ inner race
i roller curvature curvature +a -a
‘ !
F ;
i r
| convex convex ! "a . Pa Na, Pa
§ b b b b
; |
e - e Rl ———— e
convex straight no yes
?
_— SN U ,‘[ - —— —— —
convex concave ; no yes :
H ‘ !
i . ! .
e — U Y —
] :
straight convex i yes no |
| 5 |
S . |
. . ’ r r. i
straight straight v Ta s !
{ 1
! "b b ;
S — —T S
| concave convex ‘ yes no i
Lo o )

Roller - Inner Race Stability Conditions

Table 2
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be considered separately. Listing the roller transverse curvature first and
the outer race transverse curvature second, these contact combinations are:

1) convex - convex

Z) convex - straight

11 convex - concave

4) straight - convex

5} straight - straight, and

6- concave - convex.

T! ese cases are treated with the following nomenclature. The slope of
the transverse curvature is identified by the angle a« which is positive for
external cone apexes on roller a. The radius of transverse curvature, o,
is positive for convex and negative for concave surfaces. The rolling radius,
r, and radius to the center of transverse curvature, R, are both positive when
directed from the center of roller rotation toward the contact point and
neg:tive when opposite. A positivedzidentifies motion of roller a towards

plane i as before. The center distance of transverse curvature is
C = 2
% + °c (3)
Figure 4 shows the geometry of the first case, convex - convex. The
slope angle,a , is related to the axial position of roller a by
sin ¢ = :%- (4)
In plane 1 tn~ two rclling radii are given by:
rg=F *+o,c0s0 {5)
and

(6)

-~
—
n
=
)
©
O
o
wn
Q
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Convex - Convex Quter Race Contact Geometry

Figure 4
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_ Rc - Pe Ccos a
+
Ra p, COS @ (7)

"a

and assuming that the radial shift of the roller axis is negligible compared to
the axial roller shift

r
9 1c tan o
g (__.) = -(r e tr,op 2 (8)
az r]a la'¢c 1c’a’ C "a

~

Since every length in this geometry is positive,this case is determined
solely by the sign of the slope angle,

-(ryp. +r,p.)tana<0
la ¢ 1c a (9)

C a2

for positive a values or slopes as drawn in Figure 4.

Figure 5 shows the geometry for the second case, convex - straight. In
this case the slope angle is constant and the rolling radii are given by:
Ma = Ra *+ 0, COs a (10)

r. -z tana (11)

"¢ ™ Toc
where z has a value of zero in the initial position. A second difference of
the straight cone cases from the others is that z is referenced at the contact
point directly and not at a center of transverse curvature off the surface. The
quantity oc is the rolling radius of the outer race in plane 1 in the initial

position. Thus

r r._-2ztana
Fl— : R0c+ p_. COS @ (12)
la a a
and
3 ey . tana (13)
5 v = - T
z la a
Once again this is controlled by the sign of the angle a, so stability is
obtained with a positive angle « as shown in Figure 5:
tan a
) ry <0 (14)
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Convex - Straight Outer Race Contact Geometry

Figure 5
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Convex - Concave Quter Race Contact Geometry

Figure 6
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Figure 6 shows the geometry for the third case, convex - concave. The
slope angle, a, is defined by equation 4 and tne two rolling radii are given
by equations 5 and 6. Thus the analysis of this case is the same as that for
the convex - convex case. However, since Pe is negative, the stability con-
clusions to be drawn from equation 9 change slightly. Since [p | must be
greater than Py C is negative and

(r]apC + P]cpa) tana < 0 (15)

Thus two possible stable conditions result.

r 0
Fl& < |5 and a > 0 (16)
la Pa
or
r o]
F‘£> € anda<0 (17)
la ‘a

In either case the two factors offset each other so the stability is not
as great as that of the first two cases.
Figure 7 shows the geometry for the fourth case, straight - convex. As

in the second case. the slope angle a is a constant. The rolling radii are

given by:
r1a = Toa * 2 tana (18)
and
Me = Rc - P COS & (19)
Thus REPRODUCIBILITY OF LHEL
r R - p_ COS a ORIGINAL PAGE IS POOR
C C c
= (20)
r]a rOa + 2z tan o
and
r r_ tana
d Ic C
2oty = (21)
az r]a raz

Since re is always positive then stability is once again determined primarily

by the sign of the slope angle a.
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Straight - Convex Quter Race Contact Geometry

Figure 7
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r
__9_%3..’1.11< 0 (22)
Fa

for positive values of o« and is not true for negative values.

Figure 8 shows the geometry for the fifth case, straight - straight.
This case differs from the other five in that kinematically defined contact
points do not exist. If it is assumed that the contact point remains in the
center of the contact region and that the contact pressure remains nearly

uniform then the rolling radii can be expressed as

= 4
Ma - Toa* Q-tan a (23)
and
= Z
Me = Toe - 5 tan o (24)
Where the slope angle o is a constant and the two radii oa and roc are
the initial rolling radii in plane 1.
The ratio is thus
z
e i Foc ~ 7 tan a (25)
"a "0a * %_tan ¢
and its derivative with respect to z is
5 T -(ry. +r;. ) tan a
G Rl o (25)
z la la
Stability is thus defined by
- {rj.*tr ) tana <0
1c la (27)

rlaz
which is satisfied for positive o and not satisfied for negative o values.
If it is assumed that the contact points shift to the right hand edge of

roller ¢'s surfaces then roller a will continue to rcll to the right without

S

correction since a fixed imbalance will exist between the rolling radii Me and

oc of the outer ring.
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Straight - Straight Outer Race Contact Geometry

Figure 8

b
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If it is assumed that the contact points shift to the left hand edges of
roller a, then the imbalance will be between the rollinq radii "a and ra of
the roiler. This imbalance will shift the roller to tne 1zft until contact on
these edges is no longer possible at which time the roller might be shifted
back to the right by the aforemention.d outer ring edge rolling cuntact.

In any case, if edge rolling contact occurs on the straignt cases,
instabilities at least to the point of limit cycle oscillations will occur.

Figure 9 shows the geometry for the sixth and final case, concave-convex.
As in the third ca<e, the first analysis applies with the awareness of a sign
change. The -adius of transverse curvature of the roller, Py is negative and
greater in magnitude than the radius of transverse curvature of the out.r race,
p.. This makes C negative and results in the condition of equation 15 for

c

stability. Since r is greater than Ma’ the second term is much larger than

c
the first. Since this term is negative, stability is determined by the sign
of the slope angle a. A positive value indicates stability thile a negative
value indicates instability.

Table 3 is a summary of the stability conditions for the six cases of

roller-outer race contact, assuming mid-point contact for the straight

sided rollers.

Stable Roller Bearing Geometries

A roller bearing must allow free axial motion of the supported shaft
with raespect to the housing. 7o do this, one race rolling surface must be
straight or parallel to the sh:ft centerline. The roller must have a single
rolling band as its largest radius to contact that race rolling surface. To
minimize the restriction to shaft slope or misalignment, this rolling band
should be located in the center of the roller. Two levels of roller complexity

are considered in this work: (1) a single convex transverse curvature with zero
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roller outer race
curvature curvature +a -a
convex convex yes no
convex straight yes no
convex concave e . |% "c ., {°c
"a °a i " Pa
straight convex yes no
straight straight yes no
concave convex yes no

Roller - Outer Race Stability Conditions

Table 3

oEPRODUCIBILITY OF THE
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slope at the center as shown in Figure 10, and (2) a compound transverse slope
composed of a central cylinder with the largest rolling radius flanked by two
symmetric transverse curvatures which have tangent cones with apexes outside
the roller center as shown in Figure 14. In both roller configurations, the
roller cone angle, o, must be positive.

Table 4 lists the twelve possible stable bearing configurations which
these restrictions allow. The type of transverse curvature on the coned sur-
faces is listed in the table. The straight cylindrical race is noted by the
dash under inner or outer race curvature for each bearing in the table. For
the four bearings for which the stability is listed as conditional, the radii
of transverse curvatures must satisfy an inequality tor the geometry to be
stable. Geometries which require straight cones to contact straight cones
are considered unstable due to the cornering effects of their contact.

These twelve bearings with simple and compound rollers which provide
kinematic stabilization are illustrated in Figures 10 through 17. Figures
10 through 13 show the basic restoring geometry of both the four simple roller
bearings and the first four compound roller bearings. Each Figure represents
the ceometry of a simple roller bearing and a compound roller bearing. Figures
14 through 17 show the basic restoring geometry of the last four compound
roller bearings which have no simple roller counterpart. The first four
bearings represent the only possible stable combination of a convex roller with
either an inner or an outer contoured race surface. The final eight bearings
of table 4 extend this class of stable bearings by introducing the first level
of compound roller curvature. Theyrepresent the only stable bearings with
symmetric single curvature restoring surfaces. It is important to note that
for each of these geometries, the roller 1s contained by both the inner and
outer races with three contact points in the transverse plané. Thus its

position will be well defined and solid contact at each point is assured. The
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roller roller inner race outer race stability
type curvature curvature curvature
simple convex convex - conditional
- convex stable
- straight stable
- concave conditional
compound convex convex - conditional
- convex stable
- straight stable
- concave conditional
straight convex - stable
- convex stable
concave convex - stable
- convex stable

Stable Bearings

Table 4
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Stable Convex - Convex - Neutral Bearing

Figure 10
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Stable Convex - Neutral - Convex Bearing

Figure 11
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Stabie Convex - Neutral - Straight Bearing

rigure 12
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Stable Convex - Neutral - Concave Bearing

Figure 13
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Stable Straight - Convex - Heutral Bearing

Figure 14
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Stable Straight - Neutral - Convex Bearing

Figure 15



Stable - Concave - Convex - Neutral Bearing

Figure 16
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Stable Concave - Neutral - Convex Bearing

Figure 17
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next level of roller complexity is variable radii of transverse curvature.
This geometry is considered beyond the scope of the present work and will not
be considered here. However, it should be investigated as the bearing designs

are refinet.

Stabilizing Torques

The transverse geometry of the bearings works tc skew the rollers slightly
and walk them to a neutral position where the rolling action in the two contact
p anes is identical. This skewing is caused by small slip velocities at the
contact points which act as a couple. This slip velocity couple is transformed
into a torque by the tractive properties of the bearing lubricant [12].

The restoring tc.-que of the bearing geometries which have their stabilizing
contour on the inner race should be compared to the restoring torque of the
other bearing geometries which have their stabilizing contours on the outer
race - at the same operating conditions. The conditions chosen are that of a
fized outer race and rotating inner race. Since the velocity analysis is con-
ducted relative to the cage with the rollers in place, the angular velocity of
each race should be written as a function of the shaft speed expressed in RPM,
in the operating case.

Figure 18 illustrates this planetary action. Let N be the speed of the
shaft in the operating situation. wg be the speed of the cage, Wy be the
speed of the rolier, Wy be the speed of the inner race, and Wy be the speed of
the outer race. Subscript F denotes the frame, also all starred radii repre-
sent the nominal rolling radii of the respective eiements. As shown on the
instant center velocity diagram, Figure 19, the coincident point relative

velocity between the inner race and the rollers at the contact poiat with the
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Planetary Action

Figure 18



Planetary Velocity Diagram

Figure 19
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outer race, is twice that at the roller center. Thus:
Wre = wre = Z[ubrs - “’srs] (28)
or the angular velocity of the inner race relative to the cage is:

Yy T 1/2 “b/c (re/rg) (29)

Yys T /2 [”b/F B ”c/F] [+ ra/r;] (30)

Thus the fixed cage inner race speed becomes
=_lf_ * * *

Wb 60 [] + ra /(ra + rb )] N (3])
in terms of shaft RPM.

Similarly, the coincident point relative velocity between the outer race
and the roller at the contact point with the inner race is twice this relative
velocity at the roller center. These velocities are also indicated in the
instant center diagram. Thus:

wep = 9T = 2 [“crs - ”srs} (32)
or the angular velocity of the outer race relative to the cage is:

= 1/2 mc/b [rb/rs] (33)

“e/s

or

w

/s © 1/2 [“c/F - “b/F] [ - r*/(r* 4+ rp*)] (34)

and the fixed cage outer race speed becomes:

we = 55 L1 - v/ (e %+ r )] N (35)

in terms of the shaft RPM.

The restoring torque may now be modeled as a function of: these race
speeds relative to the cage; the slip or creep velocity, U, of the rolling
pair; the true normal load, P; a coefficient, K; and the roller lengih between

the concact points, Q2. In general terms this expression is:
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T = (KPQR) U (36)
Here Q is the percentage of the total bearing length between the contact points.
The only factor is this equation which varies with the different geometries is
the slip velocity, U. There are eight cases to consider since the contacting
geometries of the first four compound rollers are the same as those of the
simple rollers.

The first case to consider is that of a convex roller on a convex inner
race. In this case, the slip velocity is the difference between the pitch
point's velocity of the roller and of the inner race. Thus:

U= "o = Ta% (37)

This s1ip couple is shown in Figure 1. A positive value for U and thus for T
will serve to increase the skew and axial motion in the +z direction. Thus
for a restoring torque, U must be negative for a dispiacement of roller a in
the +z direction. From the condition of stabiiity given in equation 1, the
ratio of Ta to b must grow from equilibrium. Thus a negative value for a
restoring torque is produced by a stable geometry.

The geometry of a finite shift in axial position from that of true
cylindrical rolling is shown in Figure 20 for this case. The true rolling
radii are considered those at the initial position and are superscripted with
a star. In terms of the inner race angular velocity, the roller angular

velocity is given by:

%*

"b
wy = TF 9 (38)
a

the slip velocity is thus:

rb*
U= I"b - Y‘a (ra—*) “’b (39)
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* - *
Ta'™d " Ta"b

U= ( '.a* ) “’b (40)

In terms of the axial shift, &, the actual rolling radii becomes:

= * + — an

Thus the slip velocity becomes:

°b Pa
[ra* < Stana - r* =6 tan al

U-= w (43)
ra* b

or in terms of the fixed radii to the centers of transverse curvature:

[Rp, - Rop. ]
__-ab b"a- §

and the restoring torque per unit axial displacement in terms of the actual

shaft speed becomes:

[Rpo,. -Rop.] r_*
a br . b"a ti? a [1+ a ] =N (45)

T/5 = -KRQ2
a ra* + rb* 60

The negative sign is included tc make the restoring torque positive for a
stable configuration.

In the next three cases, two through four, the restoring torque is
generated by contact of the roller with the outer race. The slip velocity
for contact with the outer race is:

U= wcrc - Wy (46)

This slip couple is shown in Figure 2. Given positive values for We and
wys positive values for U and T/5 will cause an increase in the skew, thus

negative values here also indicate stability. This is also consistent with
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the outer race stability criterion which states that "a must grow faster than
M for a positive displacement of the roller. The geometry of a finite shift
of the roller in this case is given in Figure 21. As before, the starred

quantities refer to the nominal rolling radii. Thus

r*
w == (47)

a r.* ¢
a

and the slip velocity becomes:

(rr.* - r *r_ )
ca c a

For the second case - a convex roller in contact with a convex outer race
or a convex-neutral-convex geometry, the actual rolling radii in terms of the

axial shift, s, becomes:

ro =Tt - "C_c § tan (49)

T P (50)
Thus:

~[r * %?—6 tan a + r.* %? § tan al

U= ra* We (51)
or

U= -[Rapcr+*cha] %- w, tan o (52)

a

Thus the restoring torque per unit axial displacement in terms of the actual

shaft speed becomes:

[R.p

+Rp.] r.*
T/s = KPQe —2-& €2 3 s

tan o
[ - B
ra* C ra* + rb* 60

(53)

The positive values in this expression are due to the fact that we is
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negative, so a positive value for the equation indicates a stable geometry.
The third case is that of a convex roller in contact with a straight

sided cone at the outer race. This convex-neutral-straight geometry differs

from the second case only in the expressions for the actual rolling radii as

a function of axial roller shift. In this case C is infinite and the shape of

the contact does not change. Thus the roller's radius is constant and the

radius to the straight cone is given by:

re = rc* - § tan o (54)

Equation 48 still holds, so the slip velocity becomes:

U=- 6 tan o we (55)

The restoring torque per unit displacement is:

ra* N
= a____ 1 m

(56)

The fourth case is that of a convex roller with a concave outer race.
For this convex-neutral-concave geometry, the only possible difference from
the second case of convex-neutral-convex geometry is the expressions for the
displaced rolling radii. However, the fact that Pe and the center distance,
C, are both negative makes equations 49 and 50 valid for this case also. Fig-
ure 22 illustrates this for both equations. Thus equation 53 is also valid
for this geometry.

These formulas are valid for the simple roller geometries as well as the
first four cases of compound roller geometry which have the same correcting race
curvatures. The last four cases, five through eight, require more attention.

Cases five and six have straight cones on the roller. Thus the con-
tacting race rolling redii remain constant and the roller rolling radii change

directly with the displacement. For the straight-convex-neutral geometry, the



a) Relative to Outer Race b) Relative to Roller

Disturbed Rolling Geometry for
Convex - Neutral - Concave Bearing

Figure 22
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slip velocity is given by equation 40, and the actual rolling radii are:

* (67)
r. = ra* + § tan o (58)
Equation 40 thus becomes:

-r.*
U= -2

— 6 tan o w, (59)
a

and the restoring torque per unit displacement is:
* *
T/6 = +KPQ2 ;9;-tan a1+ ;ﬂ;—;—;m;l %% (60)
a a b
Once again this equation has had its sign changed to produce a positive
restoring torque for a stable configuration.
The sixth case with a straight cone on its roller is the straight-
neutr.l-ccnvex geometry which has the convex transverse contour on the outside
race. For this case, equation 48 describes the slip velocity and the actual

rolling radii are given by

r. = rc* (61)

and

r

a ra* + 6 tan a (62)

Equation 48 thus becomes

rc*
U= -6 ;;; tan a w_ (63)

and the restoring torque per unit displacement is:

r* r*

T/5 = KPQs «9; tan o [1 - —9—~——-~J
"a fa" *

wN
60 (64)

The final two cases,seven and eight, have concave transverse curvature on
the roller. For the seventh case, the roiler contacts the inner race and

thus the case is of a concave - convex - neutral
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geometry. This geometry is shown in Figure 23 in its displace position. Once
again the slip velocity is given by equation 40 and the displaced rolling radii
are given by equations 41 and 42 where Pa and the center distance are negative
due to the concave surface. Thus equation 45 holds for this case.

The eighth case is that of a concave roller on a convex outer race. This
is the concave-neutral-convex geometry. As in the concave-convex-neutral case,
the analysis is identical as that for the convex-neutral-convex case with the
sole exception of the signs of Py and the resulting center distance, C. Thus
equation 53 describes the restoring torque per unit displacement for the con-
cave-neutral-convex geometry.

These restoring torque per unit displacement equations are all positive
for stable geometries. They are summarized in table 5 for the eight different
contacting geometries. In these equations, Q¢ is the actual distance between
the tractive forces at the contact centers and P is the normal force on the
contact. If the contacts are with the inner race, then P is only a function of
the external force per roller, Po, and the cone angle, «:

P

_ o
Pb T2 cos a (65)

If the contacts are with the outer race then the dynamic force of the roller

must be included

w 2 2
p_ = Po * gA(" ra*?e) (rp* + rg*) wg (66)
c 2 COS o

or

b+ M (rrs20) (rx b r ) [ (1 - By S
0 a a b ra* + rb* 60

Pc - 2 COS a (67)

(=)} 3

Finally the coefficient, K, is a function of the traction coefficient for

high speed rolling of lubricated steel surfaces. This tractive coefficient has
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Disturbed Rolling Geometry for
Concave - Convex - Neutral Bearing

Figure 23
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roller inner race outer race coefficient of
curvature curvature curvatuvre KPQe tan o (Eﬂ)
60
- - - *
convex convex [Rapb Rpa 101+ Ty ]
* [3 *
ra C ra + ry
- - *
convex convex [Rapc + cha] n ra ]
r,*C r¥ gt
convex - straight [1 - ra* ]
xF ok
r‘a + rb
- . - *
convex concave [Rapc + cha] N ra
* * *
ra C r + [
straight convex - rb*
— [ +r* ]
"a
* *
ra*+ry
straight - convex rc*
F—;'[] oy ]
a "‘ *
r.* + ry
- - - *
concave convex [Rapb RbPa] [1+r ]
* * *
s C r.* + s
- - *
concave convex [RapC + cha J[1 -r
* * *
s C r.* + "y

Restoring Torque Equations

Table 5
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been measured by Hewko [12] for these conditions. The tractive coefficient can

be obtained from equation 36 as:
I N
f=pgp= KU (68)

Thus the coefficient K has units of seconds por inch and can be otiained from
data of tractive coefficient versus crezp or percent slip. For a 35 mm bearing
turning at 60,000 RPM, the pitch point velocity ot the rolier surface with
respect to the cage is slightly less than 3,000 inches per second or 15,000
feet per minute. From Hewko's data, for a 1% creep or a slip velocity of three
inches per second, one should expect a traction coefficient of (.03 at a
Hertzian contact pre;sure of 180,000 psi. To be conservative, a traction
coefficient of one half this value is assumed at this slip velccity due to the
possible differences between cylindrical and spherical contact. From eauation
68 the coefficient K which would prouuce this tractive coefficient at this

slip velocity is 0.005 seconds per inch.

Contact Stresses and Deflections

The lvads of equation 65 or 67 act on two of the three contact points of
the roller. If the corrective geometry is on the inner race, then the two
contact points on that race see Pb as a normal load. If the corrective gecvsetry
is on the outer race the PC acts ncemal to both conact points. The third con-
tact point is with the straight race. If the corrective geometry is on the

inner race then this outer contact force is:

P= Pyt (nr ) (4 r) [ (- B ] (69)

If the corrective geometry is on the outer race, then the cnntact force with

the straight inner race is merely PO, the applied radial lvac to the roller.
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For the simple roller geometry, the contact stress and deflection analysis
can be modeled as a three dimensional! double curvature Hertzian contact. This
model is appropriate for all three contacts. The formulation of the solution
to this problem is taken from Seely and Smith [13]. The solution is given in
terms of the principal radii of curvature of the surfaces - R] and R2 which
are the smalles .:ii of curvature of the two bodies in absolute value and Ry’
and RZ' which are the largest radii of curvature of the two bodies in absolute
value at the contact point. In our case, the smallest radii are the rolling
radii times the cosine of the cone angle, o, and the largest are the transverse

radii. Two constants are defined in terms of these radii:

A

1 1

1/2 (5= + 5) (70)
R] R2

and

B = 1/2 (F]zT" %-% (71)

In terms of these constants, three coefficients are determined from charts.
To simplify these calculations, the three coefficients are expressed in terms

of these constants as:

K = 0.7826 (%)""5707 (72)

.y = 2.827 (%)“0"‘557 (73)
and

C, = 0.7212 (%)“”893 (78)

Due to this curve fitting, the three coefiviciants are felt to be repre-
sentative for values of B/A greater than 10. For steel on steel contact, the
stresses and deflections are given by

-zb

“max - A (75)
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where
b=c, 3o, (76)
a = b/K (77)
6=-¢c, 2 (ﬁm:xa) (78)
and
A=§+B(]EL2) (79)

In these equations, ¢

max is the maximum contact pressure, b is the con-

tact half width in the circumference direction, a is the contact half width

in the transverse direction and § is the amount of approach of the two con-
tacting bodies under the acticn of the lcad. The quantity a is an indermediate
constant dependant on the surface curvature and elastic properties of modulus,
E, and Poisson's ratio, u. In the calculations E is taken as 29.5 x 10F psi
and yu is 0.285.

A subroutine called Hertz has been written to calculate trose guantities
for the contact points for which at least one surface has doubie curvature.
This is true for all contact points for the simple roilers but only for the
two contact points with the corrective geometry race for the compound rollers.
In that case, cyiindrical contact exists with the straight race. Although both
the race and the roller are stiffened at the ends of the contact region by
unloaded material outside the contact region, a simple two dimensional Hertz
model is used to calculate the strcss and deflection at this contact [14].

The model is:

b= [BRR)P . ,
/,?(R]mz) ) (80)
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g = - 2P
max m (8])
1-.7p 2. .1
- LI " S N < L
s=a (g % [n @)+ 5] (82)

All the variables carry the same meaning as in the proceeding case where
the only additional variable, t, is the length of contact in the transverse
direction. For a concave outer race, its rolling radius is taken as negative.
The formulas are programmed in subroutine CYL for use in estimating the
contact stress at the contact of the compound roller with che straight race.
The straignt portion of the roller may have a slight crown to alleviate the

edge stresses and make this two dimensional uniforms model more realistic.

Misalignments and Clearances

In evaluating the relative merits of different designs, a third factor
should be considered in addition to the stabi]iziné torque and load capacity.
That factor is the sensitivity of the bearing to shaft misalignment in the form
of a slope at the bearing. Due to the double contact with the contoured race
and the single contact with the straight race, the roller's position in the
loaded region can be determined as a function of the shaft slope. For the
simple convex rollers, the radius of transverse curvature of the roller surface
.. directly related to the half cone angle,y, the roller length, ¢, and the
percentage of roller length between the two contact points. As can be seen

from Figure 24,

2

pa = *"2— sin « (83)



vty ean

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Simple Convex Roiler Geometry

Figure 24
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The roller can turn about the center of this transverse curvature

with respect to the contoured race. Thus, as the shaft deflects under

load and assumes a slope at the bearing -enter, the roller will also tilt.

When the contoured race is the outer race as shown in Figure 24, both the shaft
and the »oller will tilt the same amount. The difference between the minimum
distance from the shaft center to the roller bottom and the radius of the inner

race is derived from Figure 25 as:
CLR = fpa - Zra - rb) (1 - cos v) (84)

where y is the angle of tilt or misalignment of the shaft. Note that if °a is
greater than ry + Zra, the center of transverse curvature will be below the
shaft centerline and the clearance will be positive. This would indicate that
no large edge loading would be impressed on the rollers in the load region and
that the shaft would deflect in the bearing through a distance equal to CLR to
take up this slack. If CLR were negative then this center of curvature would
be above the shaft centerline and the bearing would pick up additional radial
loading to cause deformations equal to CLR. High negative values of CLR for
expected shaft misalignments should therefore te avoided.

If the corrective geometry is on the inner race as shown in Figure 10,
the roiler will remain parallel to the outer race. Thus a clearance will be

obtained as a function of shaft slope y as shown in Figure 26:
CLR = (pa +r.) (1 - cos v) (85)

This clearance will always be positive and thus will result in a radial
displacement of the shaft in the bearing.

A quantity of interest in comparing various bearings is the drop of the
roller. This quantity is the difference in radius of the roller from the
maximum value at the center to the minimum vaiue at the outside. The higher

the drop, the more the roller is trapped between tre two contact peints with
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the corrective geometry race. Thus this race acts as a race with shoulders
if the drop is sufficiently high. For the simple rollers with a single radius
of transverse curvature this drop is:

h = Py (1 - cos [sin~! if_]) (86)

a
as can be seen in Figure 24.

For the compound rollers, as illustrated in Figure 27, the roller is not
able to rotate about a center of transverse curvature because this center does
not exist. The intersection of the two contact normals to the restoring
geometry defines a center about which the roller could rotate. But since the
center of curvature of the roller surface is greater than the distance from
this center to the contact point, a rotation of the roller is possible only
with extreme compressive loading and deflection at one of the contact points.
Thus the compound rollers are held parallel to the race with the corrective
geometry and any shaft misalignment will produce edge loading on the straight
portion of the roller. Since this width is fairly small in comparison to the
total roller length, one would expect Tower sensitivity to edge loading than
in a standard roller. An exact comparison would be difficult, however. The
straight section of the roller should be crowned, as straight rollers are, to
reduce this edge loading.

The compound roller ceometry is proportioned so that the nominail contact
points lie in the center of the outer contoured regions. Thus Q must be some-
where between 0.5 and 1.0 for three surface bands to exist. Also the length
of each outside band is given by:

2, = (1-0Q)« (87)

The drop of each roller can thus be determined in terms of Q, i, Fa? Vg

and a. For the straight roller this 1s:
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h=(1-Q) 2 tan a (88)
Figure 28 shows a compound convex roller with the appropriate geometry

for calculating its drop.

sin o =sin a - ; - 2 (89)
Pa
sin o,2=Sina+ ‘l -9! 3 (90)
Pa
and
h=o, (cosa; - cos a2) (91)

Figure 29 shows a compound concave roller with its appropriate geometry
for calculating the drop. Noting that 03 is negative in this case, the drop
can be calculated from equations 89 through 91 using the appropriate negative

value for Pa

€opound Roller Bearing Geometrv

In the developrient o the equations for the bearing cage velocities, the
contact stress levels and the restoring torques of the bearings, it has been
assumed that the nominal rolling radii of the roilers and races are ciose enough
to the actual radii to be used in all calculations. Due to the small roller
drops in the simple roller designs, this assumption is valid for these four
bearing configurations. tHowever, as noted in equation 88 and 91, the drop for
the compound rollers of the last eight bearing configurations can be signifi-
cant due to the fact that the contour transverse slope need not be zero at the
center of the bearing for these configurations.

Thus the calculation of these quantities should include the effect of this

roller drop for the eight compound roller configurations. For these beariii.,
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one race rolls at its nominal radius with the full roller radius. This is the
straight race which rolls cn the center portion of the compound roller. The
second race, which is the contoured race,rolls on a reduced radius of the con-
toured portion of the roller. The reduction in roller radius for a straight

roller can be seen in figure 27 and is given by:

6, = (-0 tang (92)
2

The reduction in roller radius at the contact center of the contoured band of
convex or concave curvature rollers is iliustrated in figures 28 and 29 and can
be expressed as:

5r=pa(ms“1-m53) (93)
For the bearings with a straight outer race, the inner race radius increasec

by 6 r and the roller becomes a compound roller with a rolling radius of re - &

r
with the inner race and a rolling radius of ra with the outer race which has
a rolling radius of Fee For these bearings, the cage velocity becomes:
r_(r.+6.)
= N
Yot b [ 55 ] (94)
(2ra - or)(ra + rb)

for the calculation of the roller dynamic load. The Hertz stress calculation
for the double curvature contacts uses

Ry = (r, =6.) cos a (95)
and

R2=(rb+6r) oS u (%)

as the two minimum radii of surface curvature. Finally the restoring torque
is multiplied by the factor

2 ry (r,.+ )
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for the straight - convex - neutral case, (5), with a straight rolier. In the
other two configurations with a contoured inner race, (1 and 7), this restoring
torque modification factor becomes:

2 "a
2ra -6

. (98)
r

For the bearings with a straight inner race, the outer race radius decreases
by Gr ard the roller becomes a compound roller with a rolling radius ry - Gr
with the outer race and a rolling radius of ry with the inner race which has a
rolling radius of "b* For these bearings, the cage velocity becomes:
r ot gy (99)
(Zra - Gr)(ra + rb)

for the calculation of the roller dynamic load. The Hertz stress calculation for

the double curvature contacts uses:

Ry = (r, - Gr) cos & (100)

-(rC *Gr) cos o (101)

and R2

as the two minimum radii of surface curvature. The factors for altering the

~Afrestoring torques from those calculated assuming a full radius roller are:
2r

o
—_3 .
2r. =86 (102)
a r
for the convex - neutral - convex case, (2), the convex - neutral - concave case

(4) and the concave - neutral - convex case (8);

2(ry = 5,) (103)

-6
Zra r
for the convex - neutral - straight case (3); and

2"‘a (rc B Sr)
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for tne straight - neutral - convex case (7). Multiplying the appropriate
coefficient in table 5 by the corresponding factor (97, 98 and 102 through 104;
yields restoring torques which reflect the roller geometry more closely than
the torque expressions listed in table 5 which assume that the roller rolls

on its full radius with both races.

Desiyn Programs

For all bearings, a given size normally has i.s outside diameter and
inside diameter specified from the application and the bearing it is to replace.
Thus the rolling radii of the races and the roller are considered input
quantities to the design., Other quantities in this category are the shaft
speed in RPM and the radial load of the bearing on a per roller basis.

For the four bearing geometries which use convex rollers with a single
transverse curvature, this radius of transverse curvature is related airectly
to the half cone angle « (equation 83) by the need to have zero slope at the
center of the roller. Thus for each of these bearing geometries, one is free
to specify the length to diameter ratio of tte roller, 2/d; the load spread
factor, Q; and the half cone angle, a, which are shown in Figure 24,

The first geometry listed is that of a convex roller with a convex inner
race and a straight outer race as pictures in Figure 10. From tatle 2, the

radius of transverse curvature of the inner race must satisfy the inequality

r

o

Pp < P for « - 0 (105)

=

a
a

for stability, If o equalled this Timiting value then the restoring torque
would be zero. This rnegates the entire purpose of the qeometry., To look at

some simple designs which are stable, the radius of transverse curvature for
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the inner race is arbitrarily set at one-half this limiting value. If this
geometry were of prime interest this factor could be varied to produce a series
of designs. The present program sets the 2/d ratio and for three load spread
factors sweeps a range of half cone angles and analyzes the resulting bearings.

The program then prints out for each half cone angie and lcad spread
factor a list of: the resulting radii of transverse curvature of the roller
and inner race, the contact stress at the inner and outer contact points, the
half widths of contact in the transverse direction, the restoring torque per
inch of disturbance, the contact point deformations, the roller drop and the
clearance caused by a one-quarter of a degree shaft misalignment. A perusal
of the values in this list gives a fair evaluation of the expected performance
of the designed bearing. Figure 30 is a flow chart for this program,

The second geometry listed is the cenvex-neutral-convex geometry which is
stable for all combinations of transverse curvature. Thus several outer race
radii of transverse curvature should be looked at. Tiree values were arcitrarily
selected: one-half the radius of transverse curvature of the roller, “he radius
itself and two times the roller's radius of curvature. Thus this program
produces three sets of outpJt data - each containing three load separation
factors for which five half cone angles are t.ed.

The third geometry listed is that of convex-neutral-straight transverse
surfaces. For this geometry, the transverse curvature of the outer race is
zero and the stability is unconditional, so the desians are controlled by the
three input factors and 2 single output is produced as in the first case.

The fourth geometry is that of convex-neutral-concave transverse surfaces.
As in the case of the first geometry, the stability is conditional. For this

case the radius of transverse curvature of the outer race is limited to be

(106)

¢ e St nciniiniiomil ©
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Calculate Roller Dynamic Load
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STOP

Simple Rolier Design Flow Chert

Figure 30
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for stability. This expression comes from table 3 and forces the outer race
to have a large negative radius of transverse curvature. For the purposes of
the design program, a value equal to twice this limit is arbitrarily selected.
This is done for the same reasons that the limiting value of Ph is halved in
the first case - to insure stability and not compromise the load capacity
excessively.

The above bearings all have rollers with a single radius of transverse
curvature. This restricts the potential use of the restoring geometry concept
by coupling the transverse radius of curvature to the half cone angle. As a
result,the Hertzian stresses at the contacts with the inner and outer races are
far from equal. In order to have more latitude in the design, the next level
of roller complexity is also investiaated in this report anc design programs
are developed for these eight bearing geometries as well. Figure 31 shows a
reller of this type with convex curvature on its corrective geometry bands.

The load separation factor, Q, and the length to diameter ratio of the roller are
selected in the program to give the roller better load carrying belance. Thus
for these design programs the inputs are the half cone angle,a, and the radii

of transverse curvature in addition to the fixed inputs of nominal rolling radii,
roller load and shaft speed.

It is assumed that the restoring geometry contacts occur «t the midpoints
of the outer bands of the roller. Thus Q must be greater than one-half and
less than unity ana the width of the straight central band is:

t = (20-1) ¢ (107)

In each program, for a given set of input data and roiler length, the load

separation factor is determined bv a finite difference Newton Raphson iteration
vhich makes the maximum Hertzian contact pressure at the central region, 7o
differ from the maximum Hertzian contact pres 2 at the contoured contacts,
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Oi» by less than 1,000 psi. Although the program puts a limit of 20 iterations

3
H
»

2

*

3

H

on this process, the variatle, I, printed out on the same line with Q is the
actual number of iterations required for each design. For the examples studied,
this value was in the range of 2 to 5 iterations.

Given the success of this iteration, the program automatically proportions ‘
rollers which have nearly equal stresses at their three contact points. A more
efficient use of roller material is thus assured. The program includes a new
variable, PCW, which is the fraction of the contoured band over which the
Hertzian contact pressure acts. Thus for a value of PCW equal to 0.5, one half
of the contoured band widths support contact pressure and the roller contact
point can shift an amount equal to one quarter of this width in the axial direc-
tion while maintaining full Hertzian contact. If PCW equaled unity, then the full
length of the roller would support contact pressure and no lateral motion
wuld be possible without changing the manner of load support. The smaller
PCW is, the more roller width is present to cause dynamic loading without pro-
viding load supporting area, Thus a second iteration is included in the program
which changes the roiler length by a finite difference Newton Raphson itera-
tion to attain the desired loaded fraction of the two outer bands of the roller.

The difference between the actual and the desired loaded lengths in the contoured
regions is controlled to be less than one percent of the roller radius. The
number of iterations required to do this is printed out as J on the same line that
the roller length and the 7/d ratio are printed out. The combination of these

two iterations produce rollers which have equal contact stresses and which use

as much of their length in actual contact as specified by PCW. Thus excess

roller material can be eliminated without sacrificing the roller capacity.

Figure 32 is a flow chart for these programs.
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These programs look at a series of different radii of transverse curvature g

of the roller, py» 3S well as a series of different half cone angles, a, tO

sweep the design space for each bearing geometry. The examples of this report
assume that PCW os 0.5 for all designs. Thus one-half of the contoured regions
are loaded.

The programs for the first four geometries make the same assumption about
the radii of transverse curvature of the races as the programs for the single
curvature rollers do, since the contacting geometries are the same. For the
two straight roller geometries the race curvature is varied as the roller
curvature is in the other programs. Finally in the last two designs, the
convex race curvature is given a radius equal to one half the concave radius
of roller transverse curvature. This is done arbitrarily to balance the
restoring torque and contact stress properties of the bearing although any
radius less than the roller transverse radius would produce a stable bearing.

Working ccpies of these programs are on file at the NASA Lewis Research

Center in the Fluid Systems Component Division.

Design Examples

To compare bearings with corrective geometry, a turbine roller bearing's
size and expected operating conditions are used as the design input. The
bearing selected is the 35 mm bore bearing shown in Figure 33 operating at
60,000 RPM or 2.1 x 10® D. There are 16 rollers in the bearing which has an
approximate dynamic capacity of 1500 pounds at a shaft speed of 500 RPM.
Taking one tenth of this capacity as the operating load of the bearing and
assuming that about one-third of this load is seen by a single roller, an

externai rolier load of 50 pounds was selected. The standard bearing has
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rollers with diameters and lengths of 7 mm or 0.2756 inches. It also has a
crown radius of 25 inches. For these parameters, the standard roller would
see Hertzian contact stresses of 160,000 psi on the inner race and 220,000 psi
on the outer race, which is high. However, our primary interest in this
example is to have a reference to match the corrective geometry performance
against. These proportions and properties serve that purpose.

The restoring geometry acts kinematically to correct for inaccuracies in
race and roller manufacture as well as thermal expansions and slight shaft
misalignments. A stable geometry and a slight taper should be sufficient to
overcome these difficulties. However, the restoring torque is a measure of
the degree of kinematic stabilization of the respective geometries. Further-
mere, these are not the only disturbances which cause roller skewing. Dynamic
roller imbalance is another. The restoring torque developed by the stable
geometries when the roller is displaced from its true rolling position can
also balance this distrubance and act to prevent forced skewing.

To model an extreme value of the required restoring torque, standard
roller tolerances were applied to the roller to produce the maximum possible
roller dynamic imbalance allowed by the manufacturing tolerances. Figure 34
shows a roller with this imbalance. The imbalance is caused basically by an
allowable radial variation of 0..J005 inches total indicator reading and an
allowable end surface variation from a true radial plane of 0.0001 inches total
indicator reading. Figure 34b shows a model of this roller imbalance which
can serve as an upper bound. For each of the two imbalances, two equal and
opposite imbalances are added to produce a couple. The radial variation could
at worst produce two half shells .00005 inches thick which extend for one half

the length of the roller. This imbalance would be:

PPN
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perpendicularity tolerance. This could at worst produce two half disc end caps

each .0001 inches thick. This imbalance would be:
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an upper bound on the maximum possible imbalance is thus:

T=Tc+1e

(110)

(111)

(112)

For the 35 mm bearing considered, - shaft speed of 60,000 RPM produces a

roller speed of 180,000 RPM. For st.el rollers 17 mm by 17 mm which spin at

this speed the dynamic imbalance turque is:

T = .0063 - .0094 = .0157 'b-in

Thus a restoring torque per i.ach of 15.7 pounds or more would offset this

imbalance with an axial rol er travel of 0.001 inches or less.

For a load spread fac tor of 0.625 the simple convex roller bearing design

programs were run for vaiues of the half cone angle from one-half of a degree

up to eight degrees. Figure 35 is a gr2nh of the roller transverse curvature

as a function of half ccne anagle for these designs. Note that this radius

becomes very small for a crown radius even at these Tow half cone angles.

For the convex-convex-neutral geometry of Figure 10, high contact stresses

at the outer race are encountered as shown in Figure 3€. 1In order to keep

- - —
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the contact stress low, a small value of a must be chosen. This results in a
low restoring torque as shown in Figure 37. In fact, this design geometry
appears to be the lease attractive of the twelve cases considered.

Figures 38 and 39 are qraphs of the outer race contact pressure and the
restoring torque per inch of axial displacement for the three d2sign geometries
of Figures 11, 12 and 13. In these three geumetries, the convex roller contacts
an outer race which ha. a transverse curvature which is convex, straight and

concave respectively. The twe graphs are contour plots of the properties

drawn with respect to the outer race curvature, 1/oc, and the half cone angle, q.

Obviously, the designs are continuous from one design to the other with the
intercepting point of zero restoring toryue corresponding to the equality of
relation 93. Although the re: J torgques rise considerably from the first
example, an attendan. rise in the outer race contact stress tends to offset
this gain. One of the best designs of this class of single transverse curvature
roller designs would be the bearing with a convex outer race with a radius of
transverse curvature equal to that of the roller and a half cone angle of one-
half a deyree. This design would have a maximum contact pressure of 241,000 psi
and a restoring torque of 12.25 pound-inches/inch. The design is <hown in
Figure 40 four times actual size. This design has a roller wi.h a 2.9 inch
crown radius. Unfortunately it does not quite have the desired restoring
torque and has a ten percent higher ouvter race contact s.ress. In all these
bearings the interference is significantly smaller than the Hertzian contact
4deformations which are less than one thousandth of an inch in all cases. Thus
the sign of th~ clearance is mea“ingle,s and no additional loading will occur
due to 2 one-Guarter of a degree shaft misalignmeni for these designs.

Eight diffe~ent desi_ . ire possible with compound rollers. These are

the 2ight geometries shown in Figures *° th-ough 17. The design prograss for

b
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these compound roller geometries were run for a Hertzian contact width to con-
tour width of 0.5, for roller transverse radii from one inch up to sixteen
inches and for half cone angles from five degrees up to thirty degrees. Fig-
ures 41 through 56 are contour plots of the contact stresses and the restoring
torques per inch of axial displacement for these eight design geometries. The
limit lines on Figures 45 to 48, and 51, 52, 55 and 56 identify designs which
cannot be built, since half cone angles and radii of transverse curvature

greater than at these limit lines cause the roller drop to exceed the roller

radius.

Several basic trends can be noticed in these graphs. The geometries with the

contoured.race as the inner race and the outer race straight have contact stress

values about 100,000 psi less that those for the outer race contoured geometry
cases. The restoring torques for the contoured inner race bearings are less
than one half those of the corresponding contoured outer race bearings which
have the same transverse curvature. Finally both the stress capacity and the
restoring torque improve as the transverse curvature of the roller decreases
from convex to straight to concave. Thus the best designs are those with
concave rollers. This is because the contact points shift more rapidly with
axial roller motion as the transverse roller curvature decreases.

Two designs are selected to illustrate the properties of internal and
external race correction. Each has a ccncave roller and a convex transverse
radius on its contoured race. Figure 57 is a four times enlargement of the
concave-convex-neutral design. In this design the half cone angle is thirty
degrees and the rollers radius of transverse curvature is eight inches while
that of the inner race is four inches. The locd spread factor is 0.708 and
tne 2/d ratio is 1.73. The resulting contact siress is 180,000 psi while the

restoring torque per inch of axial displacement is 2,600 pound-inches per inch.
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This appears to be one of the best designs of those investigated. The contact
stress is reduced twenty percent from that of the target bearing while the
restoring torque is over 100 times the anticipated required value.

The second design is shown in Figure 58. This is the concave-neutral-
convex design with corrective geometry on the outer race. This design has a
load spread factor of 0.53 and a length to diameter ratio of 2.25. It has a
half cone angle of twenty degrees and a sixteen inch radius of transverse
curvature of the roller. The outer race's contour geometry has an eight inch
transverse radius. For this bearing, the contact stress is 243,000 psi while

the restoring torque is 6140 pound inches per inch.

Discussions of Results and Conclusions

In this work a theory of kinematic stabilization of rolling cylinders is
extended and applied to the design of cylindrical roller bearings. The theory
was originally developed to predict and prevent axial motion of free rolling
external cylinders. The direct cause of this axial motion is a skewing of
the rolling elements. The kinematic stabilization mechanism puts a reverse
skew into the rolling elements to walk them back in the axial sense. This
reverse skew is directly applicable to skew correction in high speed roller
bearings.

The theory is extended from external-external roller contact to include
internal-external roller contact as well. This complete table of restoring
geometries is combined with the restraint that one race must be free to move
axially and the desire to minimize the resistance in the bearing to slight
shaft slopes. The result is a series of four bearings with single transverse
curvature of the roller and eight bearings with three bands of curvature

symmetric about the roller center plane. These bearing geometries are tabulated
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in table 4 and illustrated in Figures 10 through 17.

Models are generated for the restoring torqu. per uni; axial displacement,
the roller contact pressures and contact areas and the bearing sensitivity to
shaft misalignment. Roller shape variables are also modeled.

Two design programs are appended to this report - one for the single
transverse curvature roller bearings and one for the compound transverse
curvature roller bearings. Each geometry has its own program but the basic
operation is that of two programs.

The first set of design programs determines the roller crown radius from
the slope angle to make the roller slope zero at its center. They sweep a
range of potential designs for various slope angles and load separation factors.
The second set of design programs proportions the load separation factor to
make the contact stresses equal and proportions the roller length to use a
given fraction of the contour width for the contact stress. These programs
then sweep a range of potential slope angles and radii of transverse roller
curvature to obtain a sequence of designs.

These programs are used to investigate a series of designs and three are
selected for presentation in the report. O0Of the three, the design for the
compound transverse curvature rolier with a concave contoured roller and a
convex inner race appears to be the best. This design is illustrated in
Figu;e 57. As analyzed in this report this bearing shculd provide more than
ample skew stabilization while actually reducing the contact str.sses incurred
in operation at 2.1 x 10% DN. This design shows sufficient promise to warrant
physical construction and high speed testing.

In future considerations of these bearings, it should be noted that the

bearing complexity and modeling of this report represent a first look at the

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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application of the kinematic restoring mechanism to roller bearing design.
Refinements are possible in both the bearing geometry and the modeling. Com-
pound curvature should be extended to include multiple radii of transverse
curvature for the roller and correcting race. The model for the contact
stress of the center band of the compound roller should be improved to
estimate the edge loadiig and required crowning of this portion of the roller.
Finally, the contact point travel must not be ignured in increasing PCW to
make the loaded fraction of the roller higher and in combining several radii
of transverse curvature in the same contour. Even without these improvements,
the design programs shculd provide intercsiing alternatives to present high

speed roller hearings.
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Nomenclature

Variables

a half contact width in transverse direction in inches
b half contact width in circumferential direction in inches
c transverse curvature center distance in inches

CLR radial bearing clearance in inches

d roller diameter in inches

E elastic modulus in pounds per square inch

F dynamic roller imbalance force in pounds

f friction coefficient

g acceleration due to gravity in inches per second

h roller drop in inches

K tractive coefficient in seconds per inch

L roller length in inches

N shaft speed in revolutions per minute

0 center of transverse rotation

P radial bearing force in pounds

PCW percent width that is stressed

Q load separation factor

R radius to center of transverse curvature in inches

r rolling radius in inches

T restoring torque in pound inches or dynamic imbalance torque in pound inches

%4

center cylinder width in inches

[

slip velocity in inches per second

-l

total velocity in inches per second

W weight density in pounds per cubic inch
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z axial roller direction

a half cone angle in degrees

Y shaft slope angle in degrees

s axial shift of roller in inches or Hertzian compression in inches
8, reduction in roller rolling radius in inches
p radius of transverse curvature in inches

& Pcisson's ratio

o contact pressure in pounds per square inch
w angular velocity in radians per second
Superscripts

* nominal value at condition of true rolling
Subscripts

a roller

b inner race

(o outer race and cup imbalance

d external rolling cylinder

e external rolling cylinder and end imbalance
F frame

i inside

0 nominal rolling value

0 outside or radial force initial value

S cage

1,2 right and left sides of roller
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