16 research outputs found

    Die Rolle Kalzium-abhÀngiger KaliumkanÀle bei UUO-induzierter Nierenfibrose

    Get PDF
    Das terminale Nierenversagen mit der Nierenfibrose als pathologischem Korrelat zwingt in Deutschland jĂ€hrlich zahlreiche Menschen zu einer lebenseinschrĂ€nkenden Therapie und geht einher mit einer erhöhten MortalitĂ€t. In der vorliegenden Arbeit konnte anhand einer in vivo-Studie gezeigt werden, dass Kalzium-abhĂ€ngige KaliumkanĂ€le, im Speziellen KCa3.1, die Krankheitsprogression beeinflussen. Eine pharmakologische Blockade des Kanals könnte ein wichtiger Ansatzpunkt fĂŒr die Zukunft sein

    Enhancement of the Functional Properties of Mead Aged with Oak (Quercus) Chips at Different Toasting Levels

    Get PDF
    Consumers increasingly prefer and seek functional beverages, which, given their characteristics, provide important bioactive compounds that help prevent and treat chronic diseases. Mead is a traditional fermented alcoholic beverage made from honey solution. The aging process of mead with oak chips is innovative and bestows functional characteristics to this beverage. Thus, in this study, we sought to develop and characterize a novel functional beverage by combining the health benefits of honey with the traditional aging process of alcoholic beverages in wood. Phenolic compounds, flavonoids, and antioxidant capacity were analyzed in mead using oak chips at different toasting levels and aged for 360 days. LC-ESI-QTOF-MS/MS was used to analyze the chemical profile of different meads. Over time, the aging process with oak chips showed a higher total phenolic and flavonoid content and antioxidant capacity. Eighteen compounds belonging to the classes of organic acids, phenolic acids, flavonoids, and tannins were identified in meads after 360 days. Our findings revealed that the addition of oak chips during aging contributed to p-coumaric, ellagic, abscisic, and chlorogenic acids, and naringenin, vanillin, and tiliroside significantly impacted the functional quality of mead

    Total exhumation across the Beichuan fault in the Longmen Shan (eastern Tibetan plateau, China): Constraints from petrology and thermobarometry

    No full text
    The deep structure and deformation mechanisms of the Longmen Shan thrust belt (Sichuan, China), at the eastern border of the Tibetan plateau, were largely debated after the devastating Mw 7.9 Wenchuan earthquake (2008). Recent geophysical studies and field investigations have been focused on the active motion of the major Beichuan fault, which ruptured during the earthquake. However, the total exhumation across the fault still remains unclear. In the hanging wall of the Beichuan fault, the South China block is exhumed in the Pengguan massif. Close to the Beichuan fault, the rocks of the Pengguan massif underwent greenschist facies metamorphism associated with brittle-ductile deformation. No metamorphism is observed in the footwall of the fault. In this study, we characterize and date the metamorphic history recorded in the hanging wall of the Beichuan fault in order to constrain the depth and timing of exhumation of the rocks of the Pengguan massif along the fault. A high-resolution petrological approach involving chemical analyses and X-ray maps was used to analyze the micrometric metamorphic minerals. The P-T conditions of the greenschist facies metamorphic event were estimated by an inverse multi-equilibrium thermodynamic approach. The results, 280 ± 30 °C and 7 ± 1 kbar, suggest that the rocks of the Pengguan massif were exhumed from ca. 20 km depth. Our results underline the importance of the thrusting component in the long-term behavior of the Beichuan fault and provide a minimal depth at which the fault is rooted. In situ laser ablation 40Ar/39Ar dating of metamorphic white mica revealed that the greenschist overprint occurred at 135–140 Ma. The Pengguan massif was therefore partially thrusted along the Beichuan fault during the Lower Cretaceous, long before the Eocene-Miocene exhumation phase which is well-constrained by low-temperature thermochronology. Our results provide the first independent depth information for the exhumation history of the Pengguan massif and reveal a previously undocumented Lower Cretaceous tectonic event that marks the onset of the thick-skinned deformation in the external domain of the Longmen Shan (East of the Wenchuan Fault)

    The incorporation of emotion-regulation skills into couple- and family-based treatments for post-traumatic stress disorder

    No full text
    Abstract Post-traumatic stress disorder (PTSD) is a disabling, potentially chronic disorder that is characterized by re-experience and hyperarousal symptoms as well as the avoidance of trauma-related stimuli. The distress experienced by many veterans of the Vietnam War and their partners prompted a strong interest in developing conjoint interventions that could both alleviate the core symptoms of PTSD and strengthen family bonds. We review the evolution of and evidence base for conjoint PTSD treatments from the Vietnam era through the post-911 era. Our review is particularly focused on the use of treatment strategies that are designed to address the emotions that are generated by the core symptoms of the disorder to reduce their adverse impact on veterans, their partners and the relationship. We present a rationale and evidence to support the direct incorporation of emotion-regulation skills training into conjoint interventions for PTSD. We begin by reviewing emerging evidence suggesting that high levels of emotion dysregulation are characteristic of and predict the severity of both PTSD symptoms and the level of interpersonal/marital difficulties reported by veterans with PTSD and their family members. In doing so, we present a compelling rationale for the inclusion of formal skills training in emotional regulation in couple−/family-based PTSD treatments. We further argue that increased exposure to trauma-related memories and emotions in treatments based on learning theory requires veterans and their partners to learn to manage the uncomfortable emotions that they previously avoided. Conjoint treatments that were developed in the last 30 years all acknowledge the importance of emotions in PTSD but vary widely in their relative emphasis on helping participants to acquire strategies to modulate them compared to other therapeutic tasks such as learning about the disorder or disclosing the trauma to a loved one. We conclude our review by describing two recent innovative treatments for PTSD that incorporate a special emphasis on emotion-regulation skills training in the dyadic context: structured approach therapy (SAT) and multi-family group for military couples (MFG-MC). Although the incorporation of emotion-regulation skills into conjoint PTSD therapies appears promising, replication and comparison to cognitive-behavioral approaches is needed to refine our understanding of which symptoms and veterans might be more responsive to one approach versus others

    Renal fibrosis is attenuated by targeted disruption of K(Ca)3.1 potassium channels

    No full text
    Proliferation of interstitial fibroblasts is a hallmark of progressive renal fibrosis commonly resulting in chronic kidney failure. The intermediate-conductance Ca2+-activated K+ channel (K(Ca)3.1) has been proposed to promote mitogenesis in several cell types and contribute to disease states characterized by excessive proliferation. Here, we hypothesized that K(Ca)3.1 activity is pivotal for renal fibroblast proliferation and that deficiency or pharmacological blockade of K(Ca)3.1 suppresses development of renal fibrosis. We found that mitogenic stimulation up-regulated K(Ca)3.1 in murine renal fibroblasts via a MEK-dependent mechanism and that selective blockade of K(Ca)3.1 functions potently inhibited fibroblast proliferation by G(0)/G(1) arrest. Renal fibrosis induced by unilateral ureteral obstruction (UUO) in mice was paralleled by a robust up-regulation of K(Ca)3.1 in affected kidneys. Mice lacking K(Ca)3.1 (K(Ca)3.1(-/-)) showed a significant reduction in fibrotic marker expression, chronic tubulointerstitial damage, collagen deposition and alpha SMA(+) cells in kidneys after UUO, whereas functional renal parenchyma was better preserved. Pharmacological treatment with the selective K(Ca)3.1 blocker TRAM-34 similarly attenuated progression of UUO-induced renal fibrosis in wild-type mice and rats. In conclusion, our data demonstrate that K(Ca)3.1 is involved in renal fibroblast proliferation and fibrogenesis and suggest that K(Ca)3.1 may represent a therapeutic target for the treatment of fibrotic kidney disease

    Malnutrition Is Highly Prevalent in Patients With Chronic Pancreatitis and Characterized by Loss of Skeletal Muscle Mass but Absence of Impaired Physical Function

    No full text
    Background/Aims Patients with chronic pancreatitis (CP) have an increased risk of malnutrition, a condition linked to reduced muscle mass and physical performance. We have investigated the risk factors, phenotypic presentation, and health implications associated with malnutrition in CP. Materials and Methods In a multicenter cross-sectional study we recruited patients with confirmed CP and healthy volunteers as a control group. Malnutrition was diagnosed according to the criteria proposed by the Global Leadership Initiative on Malnutrition. We performed detailed examinations of body composition and physical function as well as testing of routine blood parameters and markers of inflammation. Results We included 66 patients [mean (±SD) age: 56.0 (±14.5) years; 51 males] and an equal number of age- and sex-matched controls. Moderate malnutrition was diagnosed in 21% (n = 14) and severe malnutrition in 42% (n = 28) of patients. Besides weight loss malnourished patients showed lower fat and skeletal muscle mass compared to both non-malnourished subjects and healthy controls. Only in severe malnutrition, blood parameters reflected elevated inflammation and reduced muscle reserves. Handgrip strength in patients did not differ by nutritional status but there was a significant correlation (rho = 0.705, p < 0.001) with skeletal muscle mass. Although 20 patients (30%) had pathologically reduced skeletal muscle mass, only two individuals (3%) had sarcopenia with concomitantly reduced handgrip strength. Conclusion Malnutrition is a frequent complication of CP characterized by loss of skeletal muscle mass. As this condition becomes evident only at an advanced stage, regular testing for altered body composition is recommended. Suitable biomarkers and the link between loss of muscle mass and physical function require further investigation. Clinical Trial Registration [https://clinicaltrials.gov/ct2/show/NCT04474743], identifier [NCT04474743]
    corecore