55 research outputs found
Reactive oxygen species mediate growth and death in submerged plants
Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS
Polar Auxin Transport Determines Adventitious Root Emergence and Growth in Rice
Flooding is a severe limitation for crop production worldwide. Unlike other crop plants, rice (Oryza sativa L.) is well adapted to partial submergence rendering it a suitable crop plant to understand flooding tolerance. Formation of adventitious roots (ARs), that support or replace the main root system, is a characteristic response to flooding. In rice, AR emergence is induced by ethylene and in the dark where roots grow upward. We used the synthetic auxins 2,4-D and α-NAA, and the auxin transport inhibitor naphthylphtalamic acid (NPA) to study emergence, growth rate and growth angle of ARs. While α-NAA had no effect, NPA and 2,4-D reduced the root elongation rate and the angle with a stronger effect on root angle in the dark than in the light. Furthermore, NPA delayed emergence of AR primordia suggesting that efflux carrier-mediated auxin transport is required for all aspects of directed AR growth. Expression analysis using OsPIN:GUS reporter lines revealed that OsPIN1b and OsPIN1c promoters were active in the stele and root cap in accord with their predicted role in acropetal auxin transport. OsPIN2 was expressed at the root tip and was reduced in the presence of NPA. Auxin activity, detected with DR5:VENUS, increased in primordia following growth induction. By contrast, auxin activity was high in epidermal cells above primordia and declined following growth induction suggesting that auxin levels are antagonistically regulated in AR primordia and in epidermal cells above AR primordia suggesting that auxin signaling contributes to the coordinated processes of epidermal cell death and AR emergence
Phytosulfokine-α Controls Hypocotyl Length and Cell Expansion in Arabidopsis thaliana through Phytosulfokine Receptor 1
The disulfated peptide growth factor phytosulfokine-α (PSK-α) is perceived by LRR receptor kinases. In this study, a role for PSK signaling through PSK receptor PSKR1 in Arabidopsis thaliana hypocotyl cell elongation is established. Hypocotyls of etiolated pskr1-2 and pskr1-3 seedlings, but not of pskr2-1 seedlings were shorter than wt due to reduced cell elongation. Treatment with PSK-α did not promote hypocotyl growth indicating that PSK levels were saturating. Tyrosylprotein sulfotransferase (TPST) is responsible for sulfation and hence activation of the PSK precursor. The tpst-1 mutant displayed shorter hypocotyls with shorter cells than wt. Treatment of tpst-1 seedlings with PSK-α partially restored elongation growth in a dose-dependent manner. Hypocotyl elongation was significantly enhanced in tpst-1 seedlings at nanomolar PSK-α concentrations. Cell expansion was studied in hypocotyl protoplasts. WT and pskr2-1 protoplasts expanded in the presence of PSK-α in a dose-dependent manner. By contrast, pskr1-2 and pskr1-3 protoplasts were unresponsive to PSK-α. Protoplast swelling in response to PSK-α was unaffected by ortho-vanadate, which inhibits the plasma membrane H+-ATPase. In maize (Zea mays L.), coleoptile protoplast expansion was similarly induced by PSK-α in a dose-dependent manner and was dependent on the presence of K+ in the media. In conclusion, PSK-α signaling of hypocotyl elongation and protoplast expansion occurs through PSKR1 and likely involves K+ uptake, but does not require extracellular acidification by the plasma membrane H+-ATPase
The Pyramiding of Three Key Root Traits Aid Breeding of Flood-Tolerant Rice
Flooding is constantly threatening the growth and yield of crops worldwide. When flooding kicks in, the soil becomes water-saturated and, therefore, the roots are the first organs to be exposed to excess water. Soon after flooding, the soil turns anoxic and the roots can no longer obtain molecular oxygen for respiration from the rhizosphere, rendering the roots dysfunctional. Rice, however, is a semi-aquatic plant and therefore relatively tolerant to flooding due to adaptive traits developed during evolution. In the present review, we have identified three key root traits, viz. cortical aerenchyma formation, a barrier to radial oxygen loss and adventitious root growth. The understanding of the physiological function, the molecular mechanisms, and the genetic regulation of these three traits has grown substantially and therefore forms the backbone of this review. Our synthesis of the recent literature shows each of the three key root traits contributes to flood tolerance in rice. One trait, however, is generally insufficient to enhance plant tolerance to flooding. Consequently, we suggest comprehensive use of all three adaptive traits in a pyramiding approach in order to improve tolerance to flooding in our major crops, in general, and in rice, in particular
Community recommendations on terminology and procedures used in flooding and low oxygen stress research
Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and temporal variations in O2 concentrations are important cues for plants to modulate development (van Dongen & Licausi, 2015; Considine et al., 2016). Environmental conditions can also expand the low O2 regions within the plant. For example, excessive rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-associated increases in precipitation events have made flooding a major abiotic stress threatening crop production and food sustainability. This increased flooding and associated crop losses highlight the urgency of understanding plant flooding responses and tolerance mechanisms.
Timely manifestation of physiological and morphological changes triggering developmental adjustments or flooding survival strategies requires accurate sensing of O2 levels. Despite progress in understanding how plants sense and respond to changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several questions remain unanswered due to a lack of high resolution tools to accurately and noninvasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it is therefore critical for researchers in the field to be aware of how experimental conditions can influence plant O2 levels, and thus on the importance of accurately reporting specific experimental details. This also requires a consensus on the definition of frequently used terms.
At the 15th New Phytologist Workshop on Flooding stress (Voesenek et al., 2016), community members discussed and agreed on unified nomenclature and standard norms for low O2 and flooding stress research. This consensus on terminology and experimental guidelines is presented here. We expect that these norms will facilitate more effective interpretation, comparison and reproducibility of research in this field. We also highlight the current challenges in noninvasively monitoring and measuring O2 concentrations in plant cells, outlining the technologies currently available, their strengths and drawbacks, and their suitability for use in flooding and low O2 research
Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid
Programmed cell death (PCD) of epidermal cells that cover adventitious root primordia in deepwater rice (Oryza sativa) is induced by submergence. Early suicide of epidermal cells may prevent injury to the growing root that emerges under flooding conditions. Induction of PCD is dependent on ethylene signaling and is further promoted by gibberellin (GA). Ethylene and GA act in a synergistic manner, indicating converging signaling pathways. Treatment of plants with GA alone did not promote PCD. Treatment with the GA biosynthesis inhibitor paclobutrazol resulted in increased PCD in response to ethylene and GA presumably due to an increased sensitivity of epidermal cells to GA. Abscisic acid (ABA) was shown to efficiently delay ethylene-induced as well as GA-promoted cell death. The results point to ethylene signaling as a target of ABA inhibition of PCD. Accumulation of ethylene and GA and a decreased ABA level in the rice internode thus favor induction of epidermal cell death and ensure that PCD is initiated as an early response that precedes adventitious root growth
- …