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Aquatic and semi-aquatic plants are well adapted to survive partial or complete
submergence which is commonly accompanied by oxygen deprivation. The gaseous
hormone ethylene controls a number of adaptive responses to submergence including
adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as
signaling intermediates in ethylene-controlled submergence adaptation and possibly also
independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism,
and non-enzymatic scavenging. While the actors are by and large known, we still have
to learn about altered ROS at the subcellular level and how they are brought about, and
the signaling cascades that trigger a specific response. This review briefly summarizes
our knowledge on the contribution of ROS to submergence adaptation and describes
spectrophotometrical, histochemical, and live cell imaging detection methods that have
been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR)
spectroscopy is introduced as a method that allows identification and quantification
of specific ROS in cell compartments. The use of advanced technologies such as EPR
spectroscopy will be necessary to untangle the intricate and partially interwoven signaling
networks of ethylene and ROS.
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INTRODUCTION
In aerobic cells about 1% of metabolically consumed O2 goes
into reactive oxygen species (ROS) generation (Puntarulo et al.,
1988). ROS are generated from molecular oxygen by a number of
reductive steps. Superoxide anions (O•−

2 ), hydroxyl radical (•OH),
singlet oxygen (1O2), hydroperoxyl radical (HO•

2), and ozone (O3)
are generated by a one-electron to three-electron reduction of oxy-
gen with reductive power being provided by electron carriers in
mitochondria and chloroplasts (Blokhina and Fagerstedt, 2010a;
Chang et al., 2012; reviewed in Shapiguzov et al., 2012). Hydrogen
peroxide (H2O2) is a non-radical that can cross membranes by
diffusion and it can be transported by specific aquaporins (Bowler
et al., 1992; Bienert et al., 2007; Borisova et al., 2012). H2O2 is pro-
duced by a two-electron reduction of molecular oxygen catalyzed
by the respiratory burst NADPH oxidase (RBOH) at the plasma
membrane. RBOH proteins in plants are homologs of NADPH
oxidase 2 of mammals (Torres et al., 1998) and belong to the
cytochrome b family. H2O2 can also be produced spontaneously
by dismutation of either O•−

2 or HO•
2.

Protection of mitochondria from unwarranted ROS produc-
tion is provided by the alternative oxidase (AOX) and by an alter-
native type II, non-proton-pumping, Ca2+-dependent NADPH
dehydrogenase (ND; reviewed in Blokhina and Fagerstedt, 2010b).
While AOX and ND protect mitochondria from oxidative stress the
oxidized state of intermediates of the electron transport chain at
the same time results in a decrease in ATP synthesis (Borecký et al.,
2006). Antioxidant activity is provided throughout the cell by low

molecular mass components such as reduced glutathione, reduced
ascorbic acid, tocopherols, tannins, ubiquinol, and phenolic com-
pounds, and by ROS scavenging enzymes such as superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX),
and glutathione peroxidase (GPX). Non-enzymatic ROS scav-
enging proteins such as thioredoxin and metallothioneins also
contribute to ROS homeostasis. The type of ROS that accumulates
is ultimately determined by the balance between ROS producing
and ROS scavenging activities. For instance SOD determines the
rate of H2O2 production and CAT the rate of H2O2 metabolism.
A change in either activity affects H2O2 steady-state levels. Gen-
eration and detoxification mechanisms of the main ROS are
summarized in Figure 1A. This review focuses on ROS as signal-
ing intermediates in submergence adaptation and it summarizes
methods used to identify the ROS involved.

SUBMERGENCE-INDUCED AND ROS-MEDIATED GROWTH
AND CELL DEATH RESPONSES
As explained above, the balance between production and scav-
enging of ROS controls cellular ROS levels in plants. Oxidative
stress occurs when these processes are imbalanced. High light,
heat, pathogen invasion, wounding, low oxygen, and re-aeration
after a phase of low oxygen stress increase ROS generation while
low light conditions that arise for example during submergence
decrease ROS production (Suzuki et al., 2012; Szarka et al., 2012).
ROS are generated via enzymatic as well as non-enzymatic reac-
tions. Which of the two mechanisms take place is influenced by
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FIGURE 1 | Reactive oxygen species homeostasis in plants. (A) ROS are
generated enzymatically or non-enzymatically depending on internal O2
levels. In photosynthetic tissues, the main sources of ROS are the
chloroplasts and peroxisomes (reviewed in Shapiguzov et al., 2012). In
photosynthetically active chloroplasts, O•−

2 is generated at photosystems I
and II. In the dark, at low light conditions or in photosynthetically inactive
tissues ROS are produced mainly in mitochondria. O•−

2 is produced by the
flavin mononucleotide binding subunit of NADH dehydrogenase in complex I
and by ubiquinol-cytochrome bc1 reductase in complex III of the mitochondrial
electron transport chain (mETC), or by RBOH at the plasma membrane. O•−

2
is dismutated to H2O2 non-enzymatically, by a manganese-containing isoform
of the superoxide dismutase (MnSOD) in the matrix (Møller, 2001), or by
FeSOD in chloroplasts and Cu/ZnSOD in the cytosol. •OH is a highly reactive
ROS that is produced in the Fenton reaction from H2O2 in the presence of
metals such as Fe2+. The uncoupling protein (PUMP), the alternative oxidase
(AOX) and an alternative NAD(P)H dehydrogenase protect mitochondria from
unwarranted ROS production. Antioxidants such as reduced glutathione,

metallothioneins; and enzymes such as superoxide dismutase (SOD),
catalase, ascorbate peroxidase (APX), and glutathione peroxidase (GPX)
exist in different cellular compartments to detoxify ROS. (B) Stem sections
of deepwater rice cultivar Pin Gaew 56 were treated with 150 μM ethephon
or left untreated as a control for 20 h. Internodal tissue was collected
10 mm above the third node for EPR analysis. (C) The double integral of the
low-field peak (AUC, area under peak) was determined to compare ROS
levels detected with the spin probe TMT-H (2,2,6,6-tetramethylpiperidinium)
in control sections and after ethephon treatment. (D) Typical EPR spectra
of the spin probe after the reaction with ROS. Two hundred microliters
of a 1-mM spin probe solution were added to 100 mg of tissue and
incubated for 10 min. EPR measurements were performed on a Bruker
Elexsys E500 spectrometer at room temperature with the following settings:
center field 3513 G, sweep width 65 G, microwave frequency 9.84 GHz,
microwave power 2 mW, modulation amplitude 1.2 G, conversion time
20.01 ms, time constant 40.96 ms (A. Steffen-Heins, B. Steffens,
unpublished).

the cellular oxygen concentration. Non-enzymatic one-electron
O2 reduction occurs at 10−4 M and higher concentrations of O2

while enzymatic reactions take place at lower oxygen concentra-
tions. The same holds true for mitochondrial electron transport
and respiration establishing a link between oxygen concentration,
mitochondrial ATP production, and oxidative stress.

Soil water logging and partial or complete submergence limit
gas diffusion which results on one hand in oxygen shortage and on
the other hand in the accumulation of the volatile hormone ethy-
lene in flooded tissues. In rice, ethylene promotes adventitious root
growth, death of epidermal cells overlaying adventitious root pri-
mordia, and parenchymal cell death which results in aerenchyma
formation. All of these responses are mediated by ROS. In deep-
water rice, ethylene-induced adventitious root growth is abolished
when RBOH activity is inhibited indicating that root growth in

response to flooding is controlled by ROS that are generated at the
plasma membrane (Steffens et al., 2012). RBOH activity is regu-
lated by small G proteins (Baxter-Burrell et al., 2002; Wong et al.,
2007). Inhibition of CAT enhances internal ROS levels and results
in growth promotion revealing that either superoxide anion or
H2O2 are the active ROS. Scavenging of H2O2 by potassium iodide
partially reduces ethylene-dependent root growth supporting this
finding.

Epidermal cells that overlay adventitious root primordia at the
stem node of rice plants undergo cell death prior to the emer-
gence of the adventitious root. Epidermal cell death is induced
by ethylene which promotes cell death via H2O2 (Steffens and
Sauter, 2009). The metallothionein MT2b is a non-enzymatic
H2O2 scavenger in rice. Genetic downregulation of MT2b ele-
vates endogenous ROS levels in rice cells (Wong et al., 2004). In
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epidermal cells that undergo cell death MT2b is downregulated by
ethylene suggesting that ethylene promotes ROS accumulation and
hence cell death induction via MT2b. In fact, constitutive genetic
downregulation of MT2b enhances epidermal cell death consti-
tutively showing that modulation of ROS scavenging by MT2b is
sufficient to alter cell death rates (Steffens and Sauter, 2009). MT2b
is downregulated in epidermal cells overlaying adventitious roots
not only by ethylene but also by H2O2 itself revealing a feedback
loop that autoamplifies H2O2 accumulation. While induction of
adventitious root growth by ethylene is also promoted by ROS,
downregulation of MT2b does not alter root growth rate suggest-
ing that regulation of epidermal cell death and of adventitious root
growth rely on different ROS signaling pathways.

Aside from the formation of adventitious roots, the develop-
ment of internal gas spaces by way of programmed cell death is
another major adaptation that helps plants to cope with flood-
ing stress. Aerenchyma are constitutively formed in deepwater
and lowland rice stems and leaf sheaths. Aerenchyma forma-
tion is enhanced in internodes of deepwater rice by ethylene
which promotes formation of O•−

2 (Steffens et al., 2011). In
lowland rice varieties aerenchyma formation in leaf sheaths is
increased upon submergence (Parlanti et al., 2011). In the low-
land rice variety FR13A, the ETHYLENE RESPONSE FACTOR
(ERF) SUBMERGENCE 1A (SUB1A) is induced by ethylene dur-
ing submergence and suppresses ethylene biosynthesis by feedback
inhibition (Fukao et al.,2006; Xu et al.,2006). In FR13A,ROS accu-
mulate independent of ethylene signaling but are none the less
responsible for submergence-induced aerenchyma formation in
leaf sheaths (Parlanti et al., 2011). The lowland rice variety Arbo-
rio Precoce does not possess SUB1A and ROS do not accumulate
during leaf sheath aerenchyma formation. However, Parlanti et al.
(2011) postulate that an early transient ROS accumulation that
occurs prior to ethylene signaling promotes aerenchyma forma-
tion. Hence, aerenchyma formation in response to submergence
appears to be controlled by ROS in lowland and deepwater rice
varieties. In some but not all varieties ROS accumulation is con-
trolled by ethylene signaling which may influence the timing of
cell death induction. In conclusion, ROS are central regulators of
plant adaptation to submergence.

ROS HOMEOSTASIS AND SIGNALING IN HYPOXIC PLANTS
At low oxygen conditions, ROS production in Arabidopsis occurs
predominantly at the plasma membrane through RBOH and in
mitochondria. RbohD one of the 10 RBOH genes of Arabidopsis
is induced at low oxygen (Pucciariello et al., 2012). Activation of
RBOH occurs furthermore at the protein level by small G pro-
teins such as ROP in Arabidopsis (Baxter-Burrell et al., 2002) and
OsRac1 in rice (Wong et al., 2007). In mitochondria O•−

2 , •OH,
1O2, HO•

2, and O3 are generated as a result of an overreduction of
the redox chain during anoxia (Chang et al., 2012). In Arabidopsis,
ROS originating in mitochondria activate the mitogen-activated
protein kinase MAPK6 to improve survival at hypoxic conditions
(Chang et al., 2012). In plant mitochondria, the AOX transfers
four electrons from ubiquinone to oxygen thereby preventing ROS
production from an overreduced ubiquinone pool (Umbach et al.,
2005). AOX is encoded by five genes of the multigene families
AOX1 and AOX2 in Arabidopsis (Considine et al., 2002; Borecký

et al., 2006). Constitutive activation of AOX in Arabidopsis or
overexpression of Arabidopsis AOX1a in tobacco decreases mito-
chondrial ROS production (Maxwell et al., 1999) while inhibition
of AOX increases ROS production (Maxwell et al., 1999; Umbach
et al., 2005). In barley roots, AOX activity is elevated at anoxic
conditions (Skutnik and Rychter, 2009). Detoxification of ROS
serves to prevent oxidative damage but at the same time may alter
a ROS signal. Future work is required to consolidate or distinguish
between the two pathways.

The dismutation of O•−
2 to H2O2 is mediated by FeSOD in

chloroplasts, MnSOD in mitochondria, and by Cu/ZnSOD in
chloroplasts and in the cytoplasm. The enzymatic reaction is
10,000-fold faster than spontaneous dismutation. H2O2 is detox-
ified to H2O and O2 by CAT. In addition, soluble, extracellular, or
cell wall-associated peroxidases detoxify H2O2. Peroxidases also
generate O•−

2 and H2O2 (Mika et al., 2010). Anoxia and hypoxia
increase SOD activity in wheat and Iris pseudacorus (Monk et al.,
1987; Biemelt et al., 1998) but not in barley roots (Szal et al., 2004)
while in maize flooded for 7 days O•−

2 levels increase due to
reduced SOD activity possibly pointing to a regulatory role. In
the wetland species Alternanthera philoxeroides and Hemarthria
altissima, SOD and CAT activities are differentially regulated dur-
ing flooding depending on the survival strategy (Luo et al., 2012).
In Alternanthera philoxeroides that shows the “escape” strategy
(Bailey-Serres and Voesenek, 2008), SOD and CAT activities are
downregulated in leaves but recover after de-submergence. H.
altissima pursues a “quiescence” strategy and displays high SOD
and CAT activities in submerged leaves. This differential response
is compatible with the view that ROS contribute to shoot growth
control.

Lipoxygenases catalyze the hydroperoxidation of poly-
unsaturated fatty acids. In wheat roots and in corn leaves levels
of O•−

2 and H2O2 increase after re-aeration resulting in ele-
vated lipid peroxidation and loss of membrane integrity (Albrecht
and Wiedenroth, 1994). Lipoxygenase activity in anoxia-treated
potato cells correlates with the duration of the low oxygen treat-
ment (Pavelic et al., 2000). Lipids are protected from oxidative
damage by tocopherols and tocotrienols known as vitamin E.
Anoxia-intolerant I. germanica has more β-tocopherol as com-
pared to anoxia-tolerant I. pseudacorus while α-tocopherol content
does not differ (Blokhina et al., 2000). Anoxia induces tocopherol
deprivation in both Iris species. However, the decline in tol-
erant I. pseudacorus sets in later than in I. germanica possibly
contributing to the observed tolerance (Blokhina et al., 2000).
Along the same line, the submergence-tolerant rice variety FR13A
protects lipids during submergence while the anoxia-sensitive vari-
ety CT6241 displays enhanced lipid peroxidation (Santosa et al.,
2007). The protective mechanism of FR13A is, however, not
understood.

In conclusion, regulation of ROS levels in flooded plants relies
on the regulation of ROS producing and ROS scavenging mech-
anisms. It is not always clear if changes in ROS levels exclusively
cause or prevent damage or if and how they contribute to sig-
naling. What has become clear, however, is that ROS abundance
is regulated at different levels in different plant species. Mecha-
nisms of ROS regulation are numerous and have not been fully
analyzed in any one species or been compared stringently between
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flooding-resistant and flooding-prone ecotypes. This should be
achieved in future research to identify unifying mechanisms that
characterize flooding-resistant plants. The following paragraph
summarizes and comments on methods currently used to detect
ROS.

DETECTION OF ROS BY SPECTROPHOTOMETRICAL AND
STAINING METHODS
It is challenging to monitor ROS abundance in plant cells due to
their low concentration and short half-life. For example, •OH has a
half-life of a few nanoseconds and O•−

2 of tenths of microseconds.
Another challenge is the spatial resolution as ROS can accumulate
in different cell compartments. Detection must be sensitive and
specific for defined ROS. Indirect measurement of ROS generation
is possible by analyzing lipid peroxidation of unsaturated fatty
acids in membranes. This method was used to investigate ROS
production under low oxygen stress in oat and wheat roots, Iris
rhizomes, and rice seedlings (Blokhina et al., 1999; Santosa et al.,
2007), and after re-aeration in rice (Fukao et al., 2011). Methods
commonly used for ROS detection are summarized in Table 1 and
described below.

Short-lived O•−
2 were measured by irreversible oxidation of

epinephrine to adrenochrome (Chance et al., 1979) in hypoxic
barley roots (Szal et al., 2004) and during ethylene-induced

aerenchyma formation in rice stems (Steffens et al., 2011). In cell
cultures, O•−

2 concentration was determined by 4-methyl-beta-
D-umbelliferyl glucopyranoside (4-MUF-glu) in a fluorometric
assay (Kush and Sabapathy, 2001) to analyze a role of the
annexin-like protein Oxy5 from Arabidopsis in the oxidative stress
response. 4-MUF-glu is cleaved by O•−

2 to the fluorescent form
4-methylumbelliferone (4-MUF). A common disadvantage of
spectrophotometrical methods is the relatively high demand for
biological material.

Hydrogen peroxide can be quantified by recording the oxi-
dation of N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red), a
derivative of dihydro-resorufin in the presence of horseradish
peroxidase in an assay that uses plant tissue extract. During the
reaction, Amplex Red is converted to the fluorescent resorufin.
Amplex Red was used to analyze H2O2 production in hypoxic and
anoxic wheat roots (Biemelt et al., 2000), in hypoxic and anoxic
Arabidopsis seedlings (Pucciariello et al., 2012), and to compare
differences in H2O2 production in two rice cultivars after 3 days
of submergence (Parlanti et al., 2011). This probe is useful for
in planta studies as it is membrane-permeable. This assay does,
however, not provide spatial resolution.

Cell type-specific ROS detection is possible with histochemical
approaches. Cerium chloride (CeCl2) or 3,3′-diaminobenzidine
(DAB, Bestwick et al., 1997; Thordal-Christensen et al., 1997;

Table 1 | Common ROS detection methods.

ROS ROS detection method Condition/plant species Reference

Spectrophotometrical methods

O•−
2 Irreversible oxidation of epinephrine Hypoxia, barley roots

Submergence, rice internodes

Szal et al. (2004)

Steffens et al. (2011)

Cleavage of 4-MUF-glu Oxidative stress, Arabidopsis Kush and Sabapathy (2001)

H2O2 Oxidation of Amplex Red Hypoxia and anoxia, wheat roots

Hypoxia and anoxia, Arabidopsis seedlings

Submergence, rice

Biemelt et al. (2000)

Pucciariello et al. (2012)

Parlanti et al. (2011)

Histochemical approaches

O•−
2 Oxidation of NBT Submergence, rice leaves

Submergence, rice internodes

Submergence, adventitious roots

Submergence, nodal epidermis

Fukao et al. (2011)

Steffens et al. (2011)

Steffens et al. (2012)

Steffens and Sauter (2009)

H2O2 Cerium perhydroxide HR, lettuce cells Bestwick et al. (1997)

Oxidation of DAB Submergence, Alternanthera philoxeroides, H. altissima

Submergence, rice leaves

Submergence, rice internodes

Submergence, adventitious roots

Submergence, nodal epidermis

Luo et al. (2012)

Fukao et al. (2011)

Steffens et al. (2011)

Steffens et al. (2012)

Steffens and Sauter (2009)

Live cell imaging

ROS/RNS DCFH2-DA Submergence, rice leaves

Arabidopsis roots

Arabidopsis leaves

Parlanti et al. (2011)

Chang et al. (2012)

Umbach et al. (2012)

H2O2 Amplex red Tobacco leaves Snyrychová et al. (2009)
1O2 Singlet Oxygen Sensor Green Wounding, Arabidopsis leaves Flors et al. (2006)
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Blokhina et al., 2001) are useful to visualize H2O2. In the presence
of CeCl2, H2O2 produces stable precipitates of cerium perhy-
droxides with higher electron density that can be observed by
transmission electron microscopy. Localization and quantifica-
tion of H2O2 in different cell compartments is possible. DAB
reacts with H2O2 in a peroxidase-catalyzed reaction resulting in an
oxidized insoluble brown precipitate. For the microscopic detec-
tion of O•−

2 , the nitro-substituted aromatic compound nitroblue
tetrazolium (NBT) is useful. Oxidized NBT forms precipitates
resulting in a blue staining. Detection of H2O2 and O•−

2 at the
cellular level was used to analyze ROS accumulation during sub-
mergence in rice leaves (Fukao et al., 2011), ethylene-induced and
ROS-mediated epidermal and parenchymal cell death in rice, and
adventitious root growth in rice (Steffens and Sauter, 2009; Stef-
fens et al., 2011, 2012). These precipitation techniques usually
require removal of chlorophyll and are hence not suited for live cell
imaging.

Fluorescent probes such as derivates of dichloro-
dihydrofluorescein diacetate can non-destructively detect ROS
through live cell imaging. The probes permeate membranes in
the non-fluorescent uncharged forms and are kept in the charged
form in the cytosol, or in organelles after cleavage of the acetate
groups by esterases (Kristiansen et al., 2009). Green fluorescence
develops due to oxidation of the ROS-reactive charged form by
O•−

2 or H2O2 but also by peroxyl radical (ROO•) and perox-
ynitrite (ONOO−; Tarpey and Fridovich, 2001). The fluorescent
probe 2′-7′-dichloro-dihydrofluorescein diacetate (DCFH2-DA)
was used for ROS and reactive nitrogen species (RNS) detection
in leaf sheath sections of submerged rice seedlings (Parlanti et al.,
2011), in roots of Arabidopsis seedlings (Chang et al., 2012), and
in Arabidopsis leaves (Umbach et al., 2012) through confocal laser
scanning microscopy. Amplex Red can also be used for specific
detection of H2O2 in cells by confocal laser scanning microscopy
(Snyrychová et al., 2009). For 1O2 detection the fluorescent dye
Singlet Oxygen Sensor Green was used to monitor wound-induced
production of this highly reactive ROS in Arabidopsis leaves (Flors
et al., 2006).

Reactive oxygen species likely play an even more important
role in the regulation of developmental events than has been rec-
ognized so far. The methods presented here will be important in
unraveling this role.

ROS DETECTION WITH ELECTRON PARAMAGNETIC
RESONANCE SPECTROSCOPY – A SENSITIVE TECHNIQUE TO
ANALYZE ROS IN PLANTA
A sensitive technique to identify, quantify and visualize short-
lived ROS is electron paramagnetic resonance (EPR) spectroscopy.

ROS are detected by EPR using spin traps or spin probes with
different properties including lipophilicity, reaction kinetic and
stability of adducts. Spin traps including the nitrones DMPO
(5,5-dimethyl-pyrroline-N-oxide) and its phosphorylated ana-
log DEPMPO (5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-
oxide) are diamagnetic and form stable adducts with transient
radicals to transform them into longer-lived radical species (Bačić
and Mojović, 2005). Suitable spin traps are defined by either
the ability to exclusively trap one ROS as was shown for EMPO
(5-ethoxycarbonyl-5-methyl-pyrroline-N-oxide) and BMPO (5-
tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide) that specifi-
cally detect O•−

2 (Bačić et al., 2008) or to lead to different specific
signature EPR spectra. Improved spin traps like DEPMPO have a
longer lifetime than DMPO-adducts, reduced degradation of the
spin adducts and a faster reaction kinetic leading to a sufficient
trapping of O•−

2 and •OH. 4-POBN [α(4-pyridyl-1-oxide)-N-
tert-butylnitrone] detects specifically •OH and has been used to
analyze radicals in the medium surrounding growing maize roots
(Liszkay et al., 2004) and in growing cucumber and Arabidopsis
roots (Renew et al., 2005). In addition, specific EPR spectra of •OH
were obtained from defined cucumber root zones (Renew et al.,
2005) suggesting that this technique allows for spatial resolution
of ROS detection.

Spin probes can be used either as endogenous nitroxides that
are reduced by ROS to the EPR-silent hydroxylamines or vice
versa. Endogenous cyclic hydroxylamines are oxidized by ROS
to EPR-active nitroxides. The very fast reaction rates between
ROS and hydroxylamine are a major advantage compared with
spin traps. The efficiency of hydroxylamines to detect O•−

2
is very high so that very low concentrations of the hydrox-
ylamines are necessary to detect O•−

2 (1 mM compared with
10–50 mM used in spin traps), and side effects can be min-
imized (Dikalov et al., 2011). This is mainly due to the high
reactivity of radicals so that their reaction site is very close
to their generation site (Heins et al., 2007). Since the reac-
tion of hydroxylamines toward ROS is unspecific, ROS must
be identified by alternative approaches. Additions of scavengers
of defined ROS such as SOD are useful (Dikalov et al., 2011).
The spin probe technique has been used to measure O•−

2 in
Arabidopsis roots (Warwar et al., 2011) and in thylakoid mem-
branes (Kozuleva et al., 2011; Borisova et al., 2012). Using the spin
probe technique we showed that ethylene enhances ROS levels
in rice internodes possibly related to parenchymal cell death and
aerenchyma formation (Figures 1B–D; Steffens et al., 2011). EPR
spectroscopy may turn out as a useful tool to analyze ROS in
defined cells and to evaluate their contribution to submergence
adaptation.
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