275 research outputs found

    Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review

    Get PDF
    A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament‐light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's‐like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin‐2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin‐2 and whether such markers can predict longitudinal cognitive decline

    Neurogranin in Alzheimer’s disease and ageing: a human post-mortem study

    Get PDF
    Neurogranin (Ng), a post-synaptic protein involved in memory formation, has been investigated as a biomarker in the cerebrospinal fluid (CSF) in Alzheimer's disease (AD) and ageing. CSF Ng levels are elevated in AD relative to healthy controls and correlate with cognition; however, few studies have focused on Ng abundance in the brain. Synapse loss in the brain correlates closely with cognitive decline in AD making synaptic biomarkers potentially important for tracking disease progression, but the links between synaptic protein changes in CSF and brain remain incompletely understood. In the current study, Ng abundance was examined in post-mortem human brain tissue across AD, healthy ageing (HA), and mid-life (ML) cohorts. Ng levels were quantified in three brain regions associated with cognitive change found during ageing and neurodegenerative diseases, namely the middle temporal gyrus, primary visual cortex and the posterior hippocampus using immunohistochemistry. To support immunohistochemical analysis, total homogenate and biochemically enriched synaptic fractions from available temporal gyrus tissues were examined by immunoblot. Finally, we examined whether Ng is associated with lifetime cognitive ageing. Ng levels were significantly reduced in AD relative to HA and ML cases across all regions. Additionally Ng was significantly reduced in HA in comparison to ML in the primary visual cortex. Immunoblotting confirms reduced Ng levels in AD cases supporting immunohistochemical results. Interestingly, there was also a significant reduction of synapse-associated Ng in our group who had lifetime cognitive decline in comparison to the group with lifetime cognitive resilience indicating loss of neurogranin in remaining synapses during ageing is associated with cognitive decline. Our findings indicate that increases in CSF Ng reflect loss of brain neurogranin and support the use of CSF Ng as a biomarker of AD and potentially of cognitive decline in healthy ageing

    Predictive blood biomarkers and brain changes associated with age-related cognitive decline

    Get PDF
    Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience

    Predictive blood biomarkers and brain changes associated with age-related cognitive decline

    Get PDF
    Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience

    Is Landscape Context Important for Riparian Conservation? Birds in Grassy Woodland

    Get PDF
    An important challenge for riparian management is to determine the extent to which landscape context influences the faunal assemblages of riparian habitats. We examined this challenge in the variegated landscapes of southeastern Queensland, Australia where riparian vegetation is surrounded by both extensive grazing and intensive cropping. We investigated whether riparian habitats adjacent to different landuses support similar bird assemblages. Three types of riparian habitat condition were sampled (uncleared ungrazed; uncleared grazed; cleared grazed) in four different land-use contexts (ungrazed woodland; grazed woodland; native pasture; crop) although only six of the twelve possible treatment combinations were available. Eighty percent of bird species responded significantly to changes in both riparian habitat condition and landscape context, while fewer than 50% of species were significantly influenced by landscape context alone. The influence of landscape context on the bird assemblage increased as the surrounding land use became more intensive (e.g. woodland to native pasture to crop). Riparian zones have been shown to have consistently high biodiversity values relative to their extent. These findings suggest it is not enough to conserve riparian habitats alone, conservation and restoration plans must also take into consideration landscape context, particularly when that context is intensively used land

    “Still good life”: On the value of reuse and distributive labor in “depleted” rural Maine

    Get PDF
    This article explores the production of wealth through distributive labor in Maine\u27s secondhand economy. While reuse is often associated with economic disadvantage, our research complicates that perspective. The labor required to reclaim, repair, redistribute, and reuse secondhand goods provides much more than a means of living in places left behind by international capitalism, but the value generated by this work is persistently discounted by dominant economic logics. On the basis of semistructured interviews, participant observation, and statewide surveys with reuse market participants in Maine, we find that the relational value of reuse, produced through caring, flexible, distributive labor, is especially significant. We argue that paying attention to the practices, politics, and value of distribution is critical for understanding wealth in communities perceived to have been left behind by global capitalist systems, particularly as wage labor opportunities and natural resources grow increasingly scarce

    Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome

    Get PDF
    Background: The prominence of sedentary behavior research in health science has grown rapidly. With this growth there is increasing urgency for clear, common and accepted terminology and definitions. Such standardization is difficult to achieve, especially across multi-disciplinary researchers, practitioners, and industries. The Sedentary Behavior Research Network (SBRN) undertook a Terminology Consensus Project to address this need. Method: First, a literature review was completed to identify key terms in sedentary behavior research. These key terms were then reviewed and modified by a Steering Committee formed by SBRN. Next, SBRN members were invited to contribute to this project and interested participants reviewed and provided feedback on the proposed list of terms and draft definitions through an online survey. Finally, a conceptual model and consensus definitions (including caveats and examples for all age groups and functional abilities) were finalized based on the feedback received from the 87 SBRN member participants who responded to the original invitation and survey. Results: Consensus definitions for the terms physical inactivity, stationary behavior, sedentary behavior, standing, screen time, non-screen-based sedentary time, sitting, reclining, lying, sedentary behavior pattern, as well as how the terms bouts, breaks, and interruptions should be used in this context are provided. Conclusion: It is hoped that the definitions resulting from this comprehensive, transparent, and broad-based participatory process will result in standardized terminology that is widely supported and adopted, thereby advancing future research, interventions, policies, and practices related to sedentary behaviors

    Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches

    Get PDF
    A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5′ ends, RNA Polymerases II and III, and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins). Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions than previously appreciated

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    corecore