376 research outputs found

    Antioxidant Protects against Increases in Low Molecular Weight Hyaluronan and Inflammation in Asphyxiated Newborn Pigs Resuscitated with 100% Oxygen

    Get PDF
    BACKGROUND: Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. METHODS & PRINCIPAL FINDINGS: Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. CONCLUSIONS & SIGNIFICANCE: Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation

    Structural Analysis to Determine the Core of Hypoxia Response Network

    Get PDF
    The advent of sophisticated molecular biology techniques allows to deduce the structure of complex biological networks. However, networks tend to be huge and impose computational challenges on traditional mathematical analysis due to their high dimension and lack of reliable kinetic data. To overcome this problem, complex biological networks are decomposed into modules that are assumed to capture essential aspects of the full network's dynamics. The question that begs for an answer is how to identify the core that is representative of a network's dynamics, its function and robustness. One of the powerful methods to probe into the structure of a network is Petri net analysis. Petri nets support network visualization and execution. They are also equipped with sound mathematical and formal reasoning based on which a network can be decomposed into modules. The structural analysis provides insight into the robustness and facilitates the identification of fragile nodes. The application of these techniques to a previously proposed hypoxia control network reveals three functional modules responsible for degrading the hypoxia-inducible factor (HIF). Interestingly, the structural analysis identifies superfluous network parts and suggests that the reversibility of the reactions are not important for the essential functionality. The core network is determined to be the union of the three reduced individual modules. The structural analysis results are confirmed by numerical integration of the differential equations induced by the individual modules as well as their composition. The structural analysis leads also to a coarse network structure highlighting the structural principles inherent in the three functional modules. Importantly, our analysis identifies the fragile node in this robust network without which the switch-like behavior is shown to be completely absent

    MicroRNA-34a upregulation during seizure-induced neuronal death

    Get PDF
    MicroRNAs (miRNAs) are short, noncoding RNAs that function as posttranscriptional regulators of gene expression by controlling translation of mRNAs. A subset of miRNAs may be critical for the control of cell death, including the p53-regulated miRNA, miR-34a. Because seizures activate p53, and p53-deficient mice are reportedly resistant to damage caused by prolonged seizures, we investigated the role of miR-34a in seizure-induced neuronal death in vivo. Status epilepticus was induced by intra-amygdala microinjection of kainic acid in mice. This led to an early (2 h) multifold upregulation of miR-34a in the CA3 and CA1 hippocampal subfields and lower protein levels of mitogen-activated kinase kinase kinase 9, a validated miR-34a target. Immunoprecipitation of the RNA-induced silencing complex component, Argonaute-2, eluted significantly higher levels of miR-34a after seizures. Injection of mice with pifithrin-α, a putative p53 inhibitor, prevented miR-34a upregulation after seizures. Intracerebroventricular injection of antagomirs targeting miR-34a reduced hippocampal miR-34a levels and had a small modulatory effect on apoptosis-associated signaling, but did not prevent hippocampal neuronal death in models of either severe or moderate severity status epilepticus. Thus, prolonged seizures cause subfield-specific, temporally restricted upregulation of miR-34a, which may be p53 dependent, but miR-34a is probably not important for seizure-induced neuronal death in this model

    How to prevent ROP in preterm infants in Indonesia?

    Get PDF
    Background and Aims: Retinopathy of prematurity (ROP) is a severe disease in preterm infants. It is seen more frequently in Low-Middle Income Countries (LMIC) like Indonesia compared to High-Income Countries (HIC). Risk factors for ROP development are -extreme- preterm birth, use of oxygen, neonatal infections, respiratory problems, inadequate nutrition, and blood and exchange transfusions. In this paper, we give an overview of steps that can be taken in LMIC to prevent ROP and provide guidelines for screening and treating ROP. Methods: Based on the literature search and data obtained by us in Indonesia's studies, we propose guidelines for the prevention, screening, and treatment of ROP in preterm infants in LMIC. Results: Prevention of ROP starts before birth with preventing preterm labor, transferring a mother who might deliver <32 weeks to a perinatal center and giving corticosteroids to mothers that might deliver <34 weeks. Newborn resuscitation must be done using room air or, in the case of very preterm infants (<29-32 weeks) by using 30% oxygen. Respiratory problems must be prevented by starting continuous positive airway pressure (CPAP) in all preterm infants <32 weeks and in case of respiratory problems in more mature infants. If needed, the surfactant should be given in a minimally invasive manner, as ROP's lower incidence was found using this technique. The use of oxygen must be strictly regulated with a saturation monitor of 91-95%. Infections must be prevented as much as possible. Both oral and parenteral nutrition should be started in all preterm infants on day one of life with preferably mothers' milk. Blood transfusions can be prevented by reducing the amount of blood needed for laboratory analysis. Discussion: Preterm babies should be born in facilities able to care for them optimally. The use of oxygen must be strictly regulated. ROP screening is mandatory in infants born <34 weeks, and infants who received supplemental oxygen for a prolonged period. In case of progression of ROP, immediate mandatory treatment is required. Conclusion: Concerted action is needed to reduce the incidence of ROP in LMIC. "STOP - R1O2P3" is an acronym that can help implement standard practices in all neonatal intensive care units in LMIC to prevent development and progression

    Improving manual oxygen titration in preterm infants by training and guideline implementation

    Get PDF
    To study oxygen saturation (SpO2) targeting before and after training and guideline implementation of manual oxygen titration, two cohorts of preterm infants 21%. ABCs where oxygen therapy was given were identified and analyzed. After training and guideline implementation the %SpO2-wtr increased (median interquartile range (IQR)) 48.0 (19.6-63.9) % vs 61.9 (48.5-72.3) %; p 95% (44.0 (27.8-66.2) % vs 30.8 (22.6-44.5) %; p 95% did not decrease (73% vs 64%; ns) but lasted shorter (2 (0-7) vs 1 (1-3) minute; p < 0.004). CONCLUSION: Training and guideline implementation in manual oxygen titration improved SpO2 targeting in preterm infants with more time spent within the target range and less frequent hyperoxaemia. The durations of hypoxaemia and hyperoxaemia during ABCs were shorter. What is Known: • Oxygen saturation targeting in preterm infants can be challenging and the compliance is low when oxygen is titrated manually. • Hyperoxaemia often occurs after oxygen therapy for oxygen desaturation during apnoeas. What is New: • Training and implementing guidelines improved oxygen saturation targeting and reduced hyperoxaemia. • Training and implementing guidelines improved manual oxygen titration during ABC

    Optical Control of Metabotropic Glutamate Receptors

    Get PDF
    G-protein coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype-specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized “LimGluRs”. The light-agonized “LimGluR2”, on which we focused, is fast, bistable, and supports multiple rounds of on/off switching. Light gates two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. The light-antagonized “LimGluR2block” can be used to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalize the optical control to two additional family members: mGluR3 and 6. The system works in rodent brain slice and in zebrafish in vivo, where we find that mGluR2 modulates the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity

    Ejection Time-Corrected Systolic Velocity Improves Accuracy in the Evaluation of Myocardial Dysfunction: A Study in Piglets

    Get PDF
    This study aimed to assess the effect of correcting for the impact of heart rate (HR) or ejection time (ET) on myocardial velocities in the long axis in piglets undergoing hypoxia. The ability to eject a higher volume at a fixed ET is a characteristic of contractility in the heart. Systolic velocity of the atrioventricular annulus displacement is directly related to volume changes of the ventricle. Both ET and systolic velocity may be measured in a single heartbeat. In 29 neonatal pigs, systolic velocity and ET were measured with tissue Doppler techniques in the mitral valve annulus, the tricuspid valve annulus, and the septum. All ejection time corrected velocities (S(ET), mean ± SEM, cm/s) decreased significantly during hypoxia (Smva(ET) 15.5 ± 0.2 to 13.2 ± 0.3 (p < 0.001), Sseptal(ET) 9.9 ± 0.1 to 7.8 ± 0.2 (p < 0.001), Stva(ET) 12.1 ± 0.2 to 9.8 ± 0.3 (p < 0.001)). The magnitude of change from baseline to hypoxia was greater for ejection time corrected systolic velocities than for RR-interval corrected velocities (mean ± SEM, cm/s); ΔSmva(ET) 2.3 ± 2.0 vs. ΔSmva(RR) 1.6 ± 1.1 (p = 0.02), ΔSseptal(ET) 2.1 ± 1.0 vs. ΔSseptal(RR) 1.6 ± 1.0 (p < 0.01), ΔStva(ET) 2.3 ± 1.1 vs. ΔStva(RR) 1.8 ± 1.3 (p = 0.04). The receiver operator characteristic (ROC) showed superior performance of S(ET) compared with uncorrected velocities. The decrease in S(ET) during hypoxia was not influenced by important hemodynamic determinants. ET-corrected systolic velocity improves accuracy and decreases variability in the evaluation of systolic longitudinal function and contractility during global hypoxia in neonatal pigs compared with systolic velocity alone. It is robust toward hemodynamic changes. This novel method has the potential of becoming a useful tool in clinical practice
    corecore