8,274 research outputs found
Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity
A functional analysis of two transdiagnostic, emotion-focused interventions on nonsuicidal self-injury
OBJECTIVE: Nonsuicidal self-injury (NSSI) is prevalent and associated with clinically significant consequences. Developing time-efficient and cost-effective interventions for NSSI has proven difficult given that the critical components for NSSI treatment remain largely unknown. The aim of this study was to examine the specific effects of mindful emotion awareness training and cognitive reappraisal, 2 transdiagnostic treatment strategies that purportedly address the functional processes thought to maintain self-injurious behavior, on NSSI urges and acts.
METHOD: Using a counterbalanced, combined series (multiple baseline and data-driven phase change) aggregated single-case experimental design, the unique and combined impact of these 2 4-week interventions was evaluated among 10 diagnostically heterogeneous self-injuring adults. Ecological momentary assessment was used to provide daily ratings of NSSI urges and acts during all study phases.
RESULTS: Eight of 10 participants demonstrated clinically meaningful reductions in NSSI; 6 participants responded to 1 intervention alone, whereas 2 participants responded after the addition of the alternative intervention. Group analyses indicated statistically significant overall effects of study phase on NSSI, with fewer NSSI urges and acts occurring after the interventions were introduced. The interventions were also associated with moderate to large reductions in self-reported levels of anxiety and depression, and large improvements in mindful emotion awareness and cognitive reappraisal skills.
CONCLUSIONS: Findings suggest that brief mindful emotion awareness and cognitive reappraisal interventions can lead to reductions in NSSI urges and acts. Transdiagnostic, emotion-focused therapeutic strategies delivered in time-limited formats may serve as practical yet powerful treatment approaches, especially for lower-risk self-injuring individuals.Dr. Barlow receives royalties from Oxford University Press, Guilford Publications Inc., Cengage Learning, and Pearson Publishing. Grant monies for various projects come from the National Institute of Mental Health (F31MH100761), the National Institute of Alcohol and Alcohol Abuse, and Colciencias (Government of Columbia Initiative for Science, Technology, and Health Innovation). Consulting and honoraria during the past several years have come from the Agency for Healthcare Research and Quality, the Foundation for Informed Medical Decision Making, the Department of Defense, the Renfrew Center, the Chinese University of Hong Kong, Universidad Catolica de Santa Maria (Arequipa, Peru), New Zealand Psychological Association, Hebrew University of Jerusalem, Mayo Clinic, and various American Universities. (F31MH100761 - National Institute of Mental Health; National Institute of Alcohol and Alcohol Abuse; Colciencias (Government of Columbia Initiative for Science, Technology, and Health Innovation))Accepted manuscrip
Three-Nucleon Force and the -Mechanism for Pion Production and Pion Absorption
The description of the three-nucleon system in terms of nucleon and
degrees of freedom is extended to allow for explicit pion production
(absorption) from single dynamic de-excitation (excitation) processes.
This mechanism yields an energy dependent effective three-body hamiltonean. The
Faddeev equations for the trinucleon bound state are solved with a force model
that has already been tested in the two-nucleon system above pion-production
threshold. The binding energy and other bound state properties are calculated.
The contribution to the effective three-nucleon force arising from the pionic
degrees of freedom is evaluated. The validity of previous coupled-channel
calculations with explicit but stable isobar components in the
wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as
postscript files upon request), CEBAF-TH-93-0
Methylation landscape in the genome of higher plants of agronomical interest
In eukaryotic cells the methylation of cytosines in DNA is an essential mechanism which is implied in the dynamic organization of the genome structure, in relation to genes expression. Plant genomes contain a significant proportion and variable according to the species, of sequences which are likely to be methylated during the life of the plant. It is known that the establishment and the maintenance of methylation profiles in both genomic areas and specific sequences constitute a crucial mediator in the modulation of genes expression during development. Recent studies have evidenced the implication of epimutations in the adaptation of plants to their environment particularly in response to biotic and abiotic stresses. Recently, the complete mapping of methylation in the genomes of Arabidopsis thaliana and rice provided invaluable information on the distribution of methylation within genes in relation to their expression. The impact of changes in the methylation profiles on the characters of agronomic importance has not been intensively studied yet, whereas this question takes a considerable importance in the context of an increasing food demand and foreseen global climate changes. The METHYLANDSCAPE project proposes to isolate genomic DNA sequences on the basis of their degree of methylation and to connect the variation of their methylation profiles with, on the one hand, the expression of the corresponding genes and, on the other hand, with environmental or developmental processes. Thus, it should be possible to identify genes which expression is differentially controlled by methylation during development and/or in situation of stress, and likely to have an influence on the agronomic value of the plant. The METHYLANDSCAPE partners thus propose to bring signification advances in plant genomics on four original species, by integrating DNA methylation mapping and the relationship between epigenome and transcriptome, up to the generation of methylation-sensitive markers linked with characters of agronomic importance. (Texte intégral
Imaging internal flows in a drying sessile polymer dispersion drop using Spectral Radar Optical Coherence Tomography (SR-OCT)
In this work, we present the visualization of the internal flows in a drying sessile polymer dispersion drop on hydrophilic and hydrophobic surfaces with Spectral Radar Optical Coherence Tomography (SR-OCT).We have found that surface features such as the initial contact angle and pinning of the contact line, play a crucial role on the flow direction and final shape of the dried drop. Moreover, imaging through selection of vertical slices using optical coherence tomography offers a feasible alternative compared to imaging through selection of narrow horizontal slices using confocal microscopy for turbid, barely transparent fluids
Cavity QED with optically transported atoms
Ultracold Rb atoms are delivered into a high-finesse optical
micro-cavity using a translating optical lattice trap and detected via the
cavity field. The atoms are loaded into an optical lattice from a magneto-optic
trap (MOT) and transported 1.5 cm into the cavity. Our cavity satisfies the
strong-coupling requirements for a single intracavity atom, thus permitting
real-time observation of single atoms transported into the cavity. This
transport scheme enables us to vary the number of intracavity atoms from 1 to
100 corresponding to a maximum atomic cooperativity parameter of 5400, the
highest value ever achieved in an atom--cavity system. When many atoms are
loaded into the cavity, optical bistability is directly measured in real-time
cavity transmission.Comment: 4 figures, 4 page
A Comparison of Phycocyanins from Three Different Species of Cyanobacteria Employing Resonance-Enhanced Coherent Anti-Stokes Raman Spectroscopy
Resonance-enhanced coherent anti-Stokes Raman spectra are recorded for monomers and trimers of phycocyanin from three different cyanobacteria: Westiellopsis prolifica, Mastigocladus laminosus and Spirulina platensis. It is shown that upon aggregation from monomer to trimer the electronic structures of both the α84 and β84 chromophores are changed. The spectra of the trimers originating from S. platensis and M. laminosus are very similar to each other, but distinctly different from the spectrum of W. prolifica
Elucidating Surface Structure with Action Spectroscopy
Surface Action Spectroscopy, a vibrational spectroscopy method developed in recent years at the Fritz Haber Institute is employed for structure determination of clean and H2O-dosed (111) magnetite surfaces. Surface structural information is revealed by using the microscopic surface vibrations as a fingerprint of the surface structure. Such vibrations involve just the topmost atomic layers, and therefore the structural information is truly surface related. Our results strongly support the view that regular Fe3O4(111)/Pt(111) is terminated by the so-called Fetet1 termination, that the biphase termination of Fe3O4(111)/Pt(111) consists of FeO and Fe3O4(111) terminated areas, and we show that the method can differentiate between different water structures in H2O-derived adsorbate layers on Fe3O4(111)/Pt(111). With this, we conclude that the method is a capable new member in the set of techniques providing crucial information to elucidate surface structures. The method does not rely on translational symmetry and can therefore also be applied to systems which are not well ordered. Even an application to rough surfaces is possible
Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry
P pili are multisubunit fibers essential for the attachment of uropathogenic Escherichia coli to the kidney. These fibers are formed by the noncovalent assembly of six different homologous subunit types in an array that is strictly defined in terms of both the number and order of each subunit type. Assembly occurs through a mechanism termed “donor-strand exchange (DSE)” in which an N-terminal extension (Nte) of one subunit donates a β-strand to an adjacent subunit, completing its Ig fold. Despite structural determination of the different subunits, the mechanism determining specificity of subunit ordering in pilus assembly remained unclear. Here, we have used noncovalent mass spectrometry to monitor DSE between all 30 possible pairs of P pilus subunits and their Ntes. We demonstrate a striking correlation between the natural order of subunits in pili and their ability to undergo DSE in vitro. The results reveal insights into the molecular mechanism by which subunit ordering during the assembly of this complex is achieved
- …