48 research outputs found

    Application of low transformation-temperature filler to reduce the residual stresses in welded component

    Get PDF
    Tensile residual stress is a major issue in integrity of the welded structures. Undesirable tensile residual stress in welding may reduce fracture toughness and fatigue life of welded structures. The low transformation-temperature (LTT) fillers, due to introducing compressive residual stresses caused by prior martensitic transformation, can reduce tensile residual stresses in the weld zone. The effects of using LTT fillers on welding residual stresses of high strength steel sheets are studied and compared with conventional fillers. 3D finite element simulations including coupled thermal-metallurgical-mechanical analyses are developed using SYSWELD software to predict the welding residual stresses. For validation of the finite element model, the residual stresses are measured through hole drilling strain gage method. The results indicate that using the LTT fillers cause a decrease of the longitudinal tensile residual stresses of the weld metal from 554 MPa to 216 MPa in comparison with conventional fillers. The transverse residual stresses of the weld line are changed from tensile 156 MPa to compressive 289 MPa with using LTT fillers instead of conventional fillers

    Neutron diffraction residual stress measurements on girth-welded 304 stainless steel pipes with weld metal deposited up to half and full pipe wall thickness

    Get PDF
    The residual stress distribution has been measured in two girth-welded austenitic stainless steel pipe weldments using time-of-flight neutron diffraction. One had weld filler metal deposited up to half the pipe wall thickness, and one had weld metal deposited up to full pipe wall thickness. The aim of the work is to evaluate the evolution in residual stress profile on filling the weld, on which there is little experimental data, and where the selection of the correct hardening model used in finite element modelling can benefit greatly from an understanding of the intermediate residual stresses partway through the welding operation. The measured residual stresses are compared with those calculated by finite element modelling and measured using X-ray diffraction. The results show a change in the measured hoop stress at the weld toe from tension to compression between the half-and fully-filled weld. The finite element results show an overprediction of the residual stress, which may be a consequence of the simple isotropic hardening model applied. The results have implications for the likely occurrence of stress corrosion cracking in this important type of pipe-to-pipe weldment

    Influence of welding sequence on welding distortions in pipes

    Get PDF
    This paper presents a three-dimensional thermo-mechanical analysis to investigate the effect of welding sequence on welding deformations in pipe-pipe joints of AISI stainless-steel type. Single-pass TIG welding with V-joint geometry in pipes having a diameter of 274 mm and a thickness of 6.2 mm is studied here. Nine different welding sequences are analysed. The finite element results are compared with experimental data. It has been shown that selecting a suitable welding sequence can substantially decrease the amount of welding distortions in this pipe geometry
    corecore