714 research outputs found

    Instrumental Utilization to Elevate Puncture Result in Percutaneous Renal Biopsy

    Get PDF
    In performing percutaneous renal biopsy, it seems that the lesser the amount of the intercalative tissue existing in the space between the derm to the kidney, the more improved the results of puncture would be, with minimal complications of puncture. As we believe such ideal operation may be secured by methods based on open needle biopsy, we have carried out renal puncture by employing the technic which constitutes of insertion of ascites trocar needle in the direction and to the depth as determined by renal explorative needle, followed by removal of the inner trocar needle and insertion of a Tru-Cut needle into the outer trocar. As a result, in 49 out of 50 cases renal tissue could be obtained, the mean length of preparations for optical microscopy being 13.8±4.3 mm and the mean number of the glomerulus contained being 25.3±15.8 with a range from 7 at the smallest and 66 at the greatest. The value of the utilization of outer trocar of the ascites trocar needle as a guide needle in renal puncture was discussed in detail

    14Be(p,n)14B reaction at 69 MeV in inverse kinematics

    Get PDF
    A Gamow-Teller (GT) transition from the drip-line nucleus 14Be to 14B was studied via the (p,n) reaction in inverse kinematics using a secondary 14Be beam at 69 MeV/nucleon. The invariant mass method is employed to reconstruct the energy spectrum. A peak is observed at an excitation energy of 1.27(2) MeV in 14B, together with bumps at 2.08 and 4.06(5) MeV. The observed forward peaking of the state at 1.27 MeV and a good description for the differential cross section, obtained with a DWBA calculation provide support for the 1+ assignment to this state. By extrapolating the cross section to zero momentum transfer the GT-transition strength is deduced. The value is found to compare well with that reported in a beta-delayed neutron emission study.Comment: 5 pages, 2 figure

    Measurement of Single and Double Spin-Flip Probabilities in Inelastic Deuteron Scattering on 12C at 270 MeV

    Get PDF
    The deuteron single and double spin-flip probabilities, S1 and S2, have been measured for the 12C(pol{d},pol{d}') reaction at Ed = 270 MeV for an excitation energy range between 4 and 24 MeV and a scattering angular range between Theta_lab = 2.5 and 7.5 deg. The extracted S1 exhibits characteristic values depending on the structure of the excited state. The S2 is close to zero over the measured excitation energy range. The SFP angular distribution data for the 2+ (4.44 MeV) and 1+ (12.71 MeV) states are well described by the microscopic DWIA calculations

    One-neutron knockout reaction of 17C on a hydrogen target at 70 MeV/nucleon

    Get PDF
    First experimental evidence of the population of the first 2- state in 16C above the neutron threshold is obtained by neutron knockout from 17C on a hydrogen target. The invariant mass method combined with in-beam gamma-ray detection is used to locate the state at 5.45(1) MeV. Comparison of its populating cross section and parallel momentum distribution with a Glauber model calculation utilizing the shell-model spectroscopic factor confirms the core-neutron removal nature of this state. Additionally, a previously known unbound state at 6.11 MeV and a new state at 6.28(2) MeV are observed. The position of the first 2- state, which belongs to a member of the lowest-lying p-sd cross shell transition, is reasonably well described by the shell-model calculation using the WBT interaction.Comment: 15 pages, 3 figure

    Search for low lying dipole strength in the neutron rich nucleus 26^{26}Ne

    Full text link
    Coulomb excitation of the exotic neutron-rich nucleus 26^{26}Ne on a nat^{nat}Pb target was measured at 58 A.MeV in order to search for low-lying E1 strength above the neutron emission threshold. Data were also taken on an nat^{nat}Al target to estimate the nuclear contribution. The radioactive beam was produced by fragmentation of a 95 A.MeV 40^{40}Ar beam delivered by the RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged fragment hodoscope and a neutron wall. Using the invariant mass method in the 25^{25}Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV. The reconstructed 26^{26}Ne angular distribution confirms its E1 nature. A reduced dipole transition probability of B(E1)=0.49±\pm0.16 e2fm2e^2fm^2 is deduced. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is obtained. The results are discussed in terms of a pygmy resonance centered around 9 MeV

    Analyzing power for the proton elastic scattering from neutron-rich 6He nucleus

    Full text link
    Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication in Physical Review
    corecore