22 research outputs found

    Low Serum Concentrations of Vitamin B6 and Iron Are Related to Panic Attack and Hyperventilation Attack

    Get PDF
    Patients undergoing a panic attack (PA) or a hyperventilation attack (HVA) are sometimes admitted to emergency departments (EDs). Reduced serotonin level is known as one of the causes of PA and HVA. Serotonin is synthesized from tryptophan. For the synthesis of serotonin, vitamin B6 (Vit B6) and iron play important roles as cofactors. To clarify the pathophysiology of PA and HVA, we investigated the serum levels of vitamins B2, B6, and B12 and iron in patients with PA or HVA attending an ED. We measured each parameter in 21 PA or HVA patients and compared the values with those from 20 volunteers. We found that both Vit B6 and iron levels were significantly lower in the PA/HVA group than in the volunteer group. There was no significant difference in the serum levels of vitamins B2 or B12. These results suggest that low serum concentrations of Vit B6 and iron are involved in PA and HVA. Further studies are needed to clarify the mechanisms involved in such differences

    Identification of a second gene associated with variation in vertebral number in domestic pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of vertebrae in pigs varies and is associated with body size. Wild boars have 19 vertebrae, but European commercial breeds for pork production have 20 to 23 vertebrae. We previously identified two quantitative trait loci (QTLs) for number of vertebrae on <it>Sus scrofa </it>chromosomes (SSC) 1 and 7, and reported that an orphan nuclear receptor, <it>NR6A1</it>, was located at the QTL on SSC1. At the <it>NR6A1 </it>locus, wild boars and Asian local breed pigs had the wild-type allele and European commercial-breed pigs had an allele associated with increased numbers of vertebrae (number-increase allele).</p> <p>Results</p> <p>Here, we performed a map-based study to define the other QTL, on SSC7, for which we detected genetic diversity in European commercial breeds. Haplotype analysis with microsatellite markers revealed a 41-kb conserved region within all the number-increase alleles in the present study. We also developed single nucleotide polymorphisms (SNPs) in the 450-kb region around the QTL and used them for a linkage disequilibrium analysis and an association study in 199 independent animals. Three haplotype blocks were detected, and SNPs in the 41-kb region presented the highest associations with the number of vertebrae. This region encodes an uncharacterized hypothetical protein that is not a member of any other known gene family. Orthologs appear to exist not only in mammals but also birds and fish. This gene, which we have named <it>vertnin </it>(<it>VRTN</it>) is a candidate for the gene associated with variation in vertebral number. In pigs, the number-increase allele was expressed more abundantly than the wild-type allele in embryos. Among candidate polymorphisms, there is an insertion of a SINE element (PRE1) into the intron of the Q allele as well as the SNPs in the promoter region.</p> <p>Conclusions</p> <p>Genetic diversity of <it>VRTN </it>is the suspected cause of the heterogeneity of the number of vertebrae in commercial-breed pigs, so the polymorphism information should be directly useful for assessing the genetic ability of individual animals. The number-increase allele of swine <it>VRTN </it>was suggested to add an additional thoracic segment to the animal. Functional analysis of <it>VRTN </it>may provide novel findings in the areas of developmental biology.</p

    DIDS, a chemical compound that inhibits RAD51-mediated homologous pairing and strand exchange

    Get PDF
    RAD51, an essential eukaryotic DNA recombinase, promotes homologous pairing and strand exchange during homologous recombination and the recombinational repair of double strand breaks. Mutations that up- or down-regulate RAD51 gene expression have been identified in several tumors, suggesting that inappropriate expression of the RAD51 activity may cause tumorigenesis. To identify chemical compounds that affect the RAD51 activity, in the present study, we performed the RAD51-mediated strand exchange assay in the presence of 185 chemical compounds. We found that 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) efficiently inhibited the RAD51-mediated strand exchange. DIDS also inhibited the RAD51-mediated homologous pairing in the absence of RPA. A surface plasmon resonance analysis revealed that DIDS directly binds to RAD51. A gel mobility shift assay showed that DIDS significantly inhibited the DNA-binding activity of RAD51. Therefore, DIDS may bind near the DNA binding site(s) of RAD51 and compete with DNA for RAD51 binding

    ヤギ成長ホルモン及びインスリン様成長因子-I遺伝子の構造解析並びに発現

    Get PDF
    本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・課程博士博士(農学)甲第6065号農博第835号新制||農||696(附属図書館)学位論文||H7||N2788(農学部図書室)UT51-95-D384京都大学大学院農学研究科農芸化学専攻(主査)教授 駒野 徹, 教授 佐々木 隆造, 教授 内海 恭三学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDFA

    Structural and Functional Analyses of the Genes for Growth Hormone (GH) and Insulin-like Growth Factor-I (IGF-I), and the Functions of GH and IGF-I

    Get PDF
    An essential element in the developmental and functional integrity of all organisms is intracellular communication. This is achieved by the secretion of soluble messenger molecules, or signal substances, which interact with a corresponding receptor molecule on the target cell surface. Hormones, such as growth hormone(GH), are defined as the messengers synthesized by endocrine glands. Growth factors such as insulin-like growth factor-I(IGF-I)are hormone-related substances produced by many tissues and play an important role in controlling growth and development. Although the physiological roles of growth factors have yet to be completely elucidated, they play important roles in the regulation of cellular proliferation and/or differentiation. Recently, there have been substantial developments in research related to peptide hormones, growth factors, and their receptors. With the discovery and characterization of numerous growth factors, it is evident that growth factors have multiple features in common with classic hormones

    Differences in gene expression profiles for subcutaneous adipose, liver, and skeletal muscle tissues between Meishan and Landrace pigs with different backfat thicknesses.

    No full text
    Backfat thickness is one of the most important traits of commercially raised pigs. Meishan pigs are renowned for having thicker backfat than Landrace pigs. To examine the genetic factors responsible for the differences, we first produced female crossbred pig lines by mating Landrace (L) × Large White (W) × Duroc (D) females (LWD) with Landrace (L) or Meishan (M) boars (i.e., LWD × L = LWDL for Landrace offspring and LWD × M = LWDM for the Meishan offspring). We confirmed that LWDM pigs indeed had a thicker backfat than LWDL pigs. Next, we performed gene expression microarray analysis in both genetic lines to examine differentially expressed genes (DEGs) in energy metabolism-related tissues, subcutaneous adipose (fat), liver, and longissimus dorsi muscle tissues. We analyzed the annotation of DEGs (2-fold cutoff) to functionally categorize them by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The number of DEGs in muscle tissues of both lines was much less than that in fat and liver tissues, indicating that DEGs in muscle tissues may not contribute much to differences in backfat thickness. In contrast, several genes related to muscle (in fat tissue) and lipid metabolism (in liver tissue) were more upregulated in LWDM pigs than LWDL pigs, indicating that those DEGs might be responsible for differences in backfat thickness. The different genome-wide gene expression profiles in the fat, liver, and muscle tissues between genetic lines can provide useful information for pig breeders
    corecore