106 research outputs found

    ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-gamma production by T cells

    Get PDF
    Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow- derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-gamma (IFN-gamma) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigenpresenting and co-stimulatory molecules but not that of coinhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-gamma-producing T cells upon antigen presentation

    On-Orbit Verification of Luminance Based Target Tracking and Faint Body Extractions by a Small Telescope on the World\u27s First Micro-Interplanetary Space Probe

    Get PDF
    In recent years, low cost and quick development of very small satellites ranging from CubeSats of 1 kg to micro-satellites of approximately 50 kg have allowed advances in space development and application. Although most of these satellites are in Earth orbits, a small spacecraft for deep-space missions has been developed and launched for the first time in the world. The Proximate Object Close Flyby with Optical Navigation (PROCYON) micro-interplanetary spacecraft, developed by the University of Tokyo and the Japan Aerospace Exploration Agency, was launched in December 2014 as one of the secondary payloads of the asteroid sample return spacecraft Hayabusa-2. The main mission of PROCYON is to demonstrate critical technologies of 50-kg-class interplanetary spacecraft exploration such as communication, attitude control, thermal control, and power generation. Furthermore, advanced missions of PROCYON enable a close flyby of an asteroid at an altitude of approximately several dozen kilometers and the capture of high-resolution images of approximately several meters per pixel by a telescope. In the flyby missions, the change of the target direction vector from the spacecraft to the asteroid is steeper than that of past flyby interplanetary probes. Thus, the spacecraft could not keep the asteroid in a telescope\u27s field of view only by performing an attitude maneuver of the entire body. To overcome this attitude maneuverability problem, a small and line-of-sight controllable telescope using a rotating mirror was developed and implemented on PROCYON. Due to the system constraint of the micro-spacecraft, this telescope should also be used for optical navigation by the faint asteroid images performed before several days of closest approach. The telescope is very lightweight, approximately 680 g. Moreover, its exposure time range is very high; thus, it can capture images of very dark astronomical bodies of approximately 12 magnitudes to supply information for trajectory correction maneuvers as well as bright bodies observed at a short distance during the close flyby. The results of experiments in the interplanetary orbit are shown in the presentation. Several 12 magnitude stars were identified from the images captured in orbit by utilizing the noise reduction techniques. This result complies with mission requirement of the optical navigation of PROCYON to extract the target images at least three days before closest approach. During the Earth approaching period, a visual feedback tracking experiment was performed utilizing the reflected light from the Earth. Time history of the rotation angle of the telescope shows the direction determination accuracy of the target body by the luminance center extraction using on-board image processing system. The know-how of the optical system of PROCYON enables a variety of missions in the interplanetary field performed by micro-spacecraft

    Tree of motility – A proposed history of motility systems in the tree of life

    Get PDF
    Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement-producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility

    Complications Associated With Spine Surgery in Patients Aged 80 Years or Older: Japan Association of Spine Surgeons with Ambition (JASA) Multicenter Study

    Get PDF
    Study Design:Retrospective study of registry data.Objectives:Aging of society and recent advances in surgical techniques and general anesthesia have increased the demand for spinal surgery in elderly patients. Many complications have been described in elderly patients, but a multicenter study of perioperative complications in spinal surgery in patients aged 80 years or older has not been reported. Therefore, the goal of the study was to analyze complications associated with spine surgery in patients aged 80 years or older with cervical, thoracic, or lumbar lesions.Methods:A multicenter study was performed in patients aged 80 years or older who underwent 262 spinal surgeries at 35 facilities. The frequency and severity of complications were examined for perioperative complications, including intraoperative and postoperative complications, and for major postoperative complications that were potentially life threatening, required reoperation in the perioperative period, or left a permanent injury.Results:Perioperative complications occurred in 75 of the 262 surgeries (29%) and 33 were major complications (13%). In multivariate logistic regression, age over 85 years (hazard ratio [HR] = 1.007, P = 0.025) and estimated blood loss ≥500 g (HR = 3.076, P = .004) were significantly associated with perioperative complications, and an operative time ≥180 min (HR = 2.78, P = .007) was significantly associated with major complications.Conclusions:Elderly patients aged 80 years or older with comorbidities are at higher risk for complications. Increased surgical invasion, and particularly a long operative time, can cause serious complications that may be life threatening. Therefore, careful decisions are required with regard to the surgical indication and procedure in elderly patients

    Risk Factors for Delirium After Spine Surgery in Extremely Elderly Patients Aged 80 Years or Older and Review of the Literature: Japan Association of Spine Surgeons with Ambition Multicenter Study

    Get PDF
    Study Design:Retrospective database analysis.Objective:Spine surgeries in elderly patients have increased in recent years due to aging of society and recent advances in surgical techniques, and postoperative complications have become more of a concern. Postoperative delirium is a common complication in elderly patients that impairs recovery and increases morbidity and mortality. The objective of the study was to analyze postoperative delirium associated with spine surgery in patients aged 80 years or older with cervical, thoracic, and lumbar lesions.Methods:A retrospective multicenter study was performed in 262 patients 80 years of age or older who underwent spine surgeries at 35 facilities. Postoperative complications, incidence of postoperative delirium, and hazard ratios of patient-specific and surgical risk factors were examined.Results:Postoperative complications occurred in 59 of the 262 spine surgeries (23%). Postoperative delirium was the most frequent complication, occurring in 15 of 262 patients (5.7%), and was significantly associated with hypertension, cerebrovascular disease, cervical lesion surgery, and greater estimated blood loss (P < .05). In multivariate logistic regression using perioperative factors, cervical lesion surgery (odds ratio = 4.27, P < .05) and estimated blood loss ≥300 mL (odds ratio = 4.52, P < .05) were significantly associated with postoperative delirium.Conclusions:Cervical lesion surgery and greater blood loss were perioperative risk factors for delirium in extremely elderly patients after spine surgery. Hypertension and cerebrovascular disease were significant risk factors for postoperative delirium, and careful management is required for patients with such risk factors

    LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance

    Get PDF
    Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance. © 2014 by the American Diabetes Association

    Evidence of causality of low body mass index on risk of adolescent idiopathic scoliosis: a Mendelian randomization study

    Get PDF
    IntroductionAdolescent idiopathic scoliosis (AIS) is a disorder with a three-dimensional spinal deformity and is a common disease affecting 1-5% of adolescents. AIS is also known as a complex disease involved in environmental and genetic factors. A relation between AIS and body mass index (BMI) has been epidemiologically and genetically suggested. However, the causal relationship between AIS and BMI remains to be elucidated.Material and methodsMendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWASs) of AIS (Japanese cohort, 5,327 cases, 73,884 controls; US cohort: 1,468 cases, 20,158 controls) and BMI (Biobank Japan: 173430 individual; meta-analysis of genetic investigation of anthropometric traits and UK Biobank: 806334 individuals; European Children cohort: 39620 individuals; Population Architecture using Genomics and Epidemiology: 49335 individuals). In MR analyses evaluating the effect of BMI on AIS, the association between BMI and AIS summary statistics was evaluated using the inverse-variance weighted (IVW) method, weighted median method, and Egger regression (MR-Egger) methods in Japanese.ResultsSignificant causality of genetically decreased BMI on risk of AIS was estimated: IVW method (Estimate (beta) [SE] = -0.56 [0.16], p = 1.8 × 10-3), weighted median method (beta = -0.56 [0.18], p = 8.5 × 10-3) and MR-Egger method (beta = -1.50 [0.43], p = 4.7 × 10-3), respectively. Consistent results were also observed when using the US AIS summary statistic in three MR methods; however, no significant causality was observed when evaluating the effect of AIS on BMI.ConclusionsOur Mendelian randomization analysis using large studies of AIS and GWAS for BMI summary statistics revealed that genetic variants contributing to low BMI have a causal effect on the onset of AIS. This result was consistent with those of epidemiological studies and would contribute to the early detection of AIS

    Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies

    No full text
    Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes

    Production and Properties of Nano-scale Oxide Dispersion Strengthened (ODS) 9Cr Martensitic Steel Claddings

    Get PDF
    The 9Cr-ODS martensitic steel claddings were developed by cold-rolling and subsequent heat-treatment. The standard chemical composition is Fe-0.13C-9Cr-2W-0.2Ti-0.35Y2O3. The substantially elongated grains formed by cold-rolling turned out to be into equi-axied grains by ferrite to austenite phase transformation at the final heat-treatment. The produced claddings have the tempered martensitic structure and excess oxygen of 0.060 mass%. The superior tensile and creep rupture strength were shown in the produced cladding, compared with conventional ferritic (PNC-FMS) and even austenitic (PNC316) claddings at higher temperature and extended time. The strength improvement is attributed to finely distributed nano-scale complex oxide. The coarser ferrite grains produced by slow cooling make further improvement in the tensile and creep rupture strength beyond those of tempered martensite at high temperature and longer testing time. The higher excess oxygen content of 0.137 mass% prevents fine distribution of the oxide particles that lead to inferior high temperature tensile and creep strength
    corecore