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Dendritic cells (DCs) present foreign antigens to T cells via
the major histocompatibility complex (MHC), thereby inducing
acquired immune responses. ATP accumulates at sites of
inflammation or in tumor tissues, which triggers local inflam-
matory responses. However, it remains to be clarified how ATP
modulates the functions of DCs. In this study, we investigated
the effects of extracellular ATP on mouse bone marrow–
derived dendritic cells (BMDCs) as well as the potential for
subsequent T cell activation. We found that high concentra-
tions of ATP (1 mM) upregulated the cell surface expression
levels of MHC-I, MHC-II, and co-stimulatory molecules CD80
and CD86 but not those of co-inhibitory molecules PD-L1 and
PD-L2 in BMDCs. Increased surface expression of MHC-I,
MHC-II, CD80, and CD86 was inhibited by a pan-P2 recep-
tor antagonist. In addition, the upregulation of MHC-I and
MHC-II expression was inhibited by an adenosine P1 receptor
antagonist and by inhibitors of CD39 and CD73, which
metabolize ATP to adenosine. These results suggest that
adenosine is required for the ATP-induced upregulation of
MHC-I and MHC-II. In the mixed leukocyte reaction assay,
ATP-stimulated BMDCs activated CD4 and CD8T cells and
induced interferon-γ (IFN-γ) production by these T cells.
Collectively, these results suggest that high concentrations of
extracellular ATP upregulate the expression of antigen-
presenting and co-stimulatory molecules but not that of co-
inhibitory molecules in BMDCs. Cooperative stimulation of
ATP and its metabolite adenosine was required for the upre-
gulation of MHC-I and MHC-II. These ATP-stimulated
BMDCs induced the activation of IFN-γ-producing T cells
upon antigen presentation.

Dendritic cells (DCs) recognize and take up foreign antigens
such as bacteria, viruses, and tumor cells and produce antigen-
derived peptides to present to T cells via the major histo-
compatibility complex (MHC); this leads to the activation of
antigen-specific acquired immune responses (1, 2). There are
two types of MHC molecules: class I (MHC-I) and class II
(MHC-II). MHC-I presents antigens derived from cytoplasmic
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proteins to CD8T cells. DCs can also present foreign antigens
by MHC-I through the cross-presentation mechanism. Acti-
vated CD8T cells, also known as cytotoxic T lymphocytes
(CTLs), directly kill virus-infected cells and tumor cells (3, 4).
By contrast, MHC-II is specifically expressed on antigen-
presenting cells and presents extracellular antigens to CD4T
cells. Activated CD4T cells have several functions, such as
inducing the activation of macrophages and promoting anti-
body production by B cells (5, 6). In addition to MHC mole-
cules, co-stimulatory molecules such as CD80 and CD86 on
the cell surface are required to activate T cells. In contrast, co-
inhibitory molecules such as programmed PD-L1 and PD-L2
suppress T cell activation (7).

ATP, an energy transfer molecule, exists abundantly inside
cells but is rarely found in the intercellular space in normal
tissues. Currently, extracellular ATP has been recognized as a
signaling molecule that induces signals via specific receptors,
resulting in a variety of effects (8, 9). Tissue damage triggers
local ATP release as a danger signal that spreads to the sur-
rounding cells (10). In addition, several cells, such as macro-
phages and neutrophils, release ATP extracellularly in
response to stimuli, affecting themselves or surrounding cells
(10). ATP is released into the extracellular space from the
cytosol through pannexin or connexin hemichannels or
released from vesicles via exocytosis (9, 11)

ATP induces signals via P2 purinergic receptors, including
P2X receptors, which are ligand-gated ion channel receptors
(12), and P2Y receptors, which are G protein-coupled re-
ceptors (13). Extracellular ATP is known to act on several
kinds of immune cells, such as macrophages, neutrophils, and
DCs, to promote cell migration or induce an inflammatory
response (9). As a result, extracellular ATP has been involved
in inflammatory diseases such as neuroinflammatory diseases
and rheumatoid arthritis (14, 15). ATP also plays a role in anti-
cancer immunity. Tumor growth is promoted in P2X7-
deficient mice via the suppression of immune cell
chemotaxis, including the inhibition of DC recruitment to the
tumor site (16, 17). ATP released from dead tumor cells ac-
tivates immune cells and augments the anti-tumor immune
response (18, 19). These findings indicate that ATP is critical
for the activation of inflammation and tumor immunity.
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ATP and adenosine cooperatively induce DC activation
Extracellular ATP is metabolized to adenosine by ecto-nu-
cleases—mostly CD39 and CD73—that remove the phosphate
group, converting ATP to AMP and then to adenosine (14).
This adenosine exerts its physiological effects by acting on P1
adenosine receptors (A1, A2a, A2b, and A3), which are G
protein-coupled receptors (20). In contrast to ATP, adenosine
is known for its ability to reduce inflammation and suppress
immunological responses (15, 21). Therefore, it is believed that
ATP and adenosine are crucial for controlling immunological
responses.

Several studies have reported the effects of high concen-
trations of ATP. Since the EC50 of P2X7 for ATP is above
0.1 mM (22), relatively high concentrations of ATP are
required to activate the P2X7. High concentrations of ATP
(>1.5 mM) are required to induce IL-1β production via
inflammasome activation in neutrophils (23). High concen-
trations of ATP (>1 mM) promote the killing of bacteria taken
up via phagocytosis by macrophages (24, 25). ATP has
different effects on CD4T cells in a concentration-dependent
manner: at a low concentration (250 nM), ATP induces the
proliferation of activated CD4T cells, whereas at a high con-
centration (1 mM), it enhances the function of regulatory T
cells by acting on the P2X7 receptor (26). Using recently
developed probes, high concentrations of extracellular ATP
(�1 mM) have been observed even under physiological con-
ditions (27). High levels of ATP have been observed in tumor
tissues and areas of inflammation; the local ATP concentration
can exceed 1 mM (18, 28–30). Therefore, high concentrations
of ATP may have a variety of impacts under normal and
pathological circumstances.

DCs are activated by various external stimuli, and the
type of stimulus determines the characteristics of the sub-
sequently activated T cells. Toll-like receptor (TLR)-medi-
ated signals are well-known activation stimuli of DCs.
Gram-negative bacteria-derived lipopolysaccharide (LPS), a
TLR4 ligand and a well-defined DC activator, induces the
upregulation of antigen-presenting molecules such as MHC-
I and MHC-II and co-stimulatory molecules such as CD80
and CD86 on the cell surface and induces cytokine pro-
duction (31, 32).

Effects of ATP on DC activation have also been reported
(33). ATP stimulation upregulates the expression of CD80 and
CD86 in human monocyte-derived DCs (34) and murine bone
marrow–derived dendritic cells (BMDCs) (35). Although these
previous studies demonstrated that ATP stimulation in-
fluences the antigen-presenting function of DCs, it is not
completely understood how ATP impacts the expression of
cell surface molecules such as antigen-presenting molecules,
co-stimulatory molecules, and co-inhibitory molecules. The
receptors by which ATP impacts DCs are also unknown. In
addition, these previous studies mainly used relatively lower
concentrations of ATP (�10 μM), and the effects of high
concentrations of ATP remain to be clarified. In this study, we
analyzed the characteristics and the mechanism of ATP-
induced activation of DCs and the type of T cell activation
induced by them.
2 J. Biol. Chem. (2023) 299(4) 104587
Results

Effect of extracellular ATP stimulation on the cell surface
expression of antigen presentation-related molecules in
BMDCs

We examined the effect of extracellular ATP stimulation on
the functions of DCs using BMDCs differentiated by a
granulocyte-macrophage colony-stimulating factor (GM-CSF).
Since high concentrations of ATP induce cell death in some
kinds of cells (26, 36), we analyzed the viability of mouse
BMDCs after ATP stimulation. ATP stimulation at concen-
trations of 0.1, 0.3, and 1 mM for 24 h did not affect the
viability of immature BMDCs, and cell death was observed
upon stimulation with 3 mM ATP (Fig. S1A). We also exam-
ined the effect of ATP on the viability of previously LPS-
stimulated BMDCs (mature BMDCs). ATP stimulation
caused cell death in mature BMDCs at concentrations of 1 and
3 mM (Fig. S1B).

We then examined the effect of various concentrations of
ATP on the cell surface MHC-II and CD86 expression on
BMDCs (immature BMDCs). There was no significant change
in MHC-II and CD86 expression in the presence of 0.1 mM
ATP, whereas 0.3 and 1 mM of ATP induced increases in the
surface expression of MHC-II and CD86 in a dose-dependent
manner (Fig. 1A). Based on these results, we further examined
the effects of 1 mM ATP stimulation on the expression of
antigen presentation-related molecules on BMDCs in com-
parison with the effect of LPS stimulation. ATP stimulation
significantly increased the expression of the antigen presen-
tation molecules, MHC-I and MHC-II, and co-stimulatory
molecules, CD80 and CD86 (Fig. 1B). However, the levels of
these proteins induced by ATP stimulation were lower than
those induced by LPS (Fig. 1B). Additionally, LPS induced an
increase in the cell surface expression of the co-inhibitory
molecules PD-L1 and PD-L2, whereas ATP stimulation did
not have this effect (Fig. 1B).

While BMDCs differentiated with GM-CSF have charac-
teristics of the DCs induced in inflammatory conditions,
BMDCs differentiated with FMS-like tyrosine kinase 3 ligand
(Flt3L) have characteristics of tissue-resident steady-state DCs
(37). Therefore, we also examined the effect of ATP in Flt3L-
induced BMDCs. Similar to the results of the GM-CSF-
induced BMDCs, ATP stimulation induced the upregulation
of MHC-II and CD86 expression. The effect of ATP on PD-L1
expression was low compared to that induced by LPS stimu-
lation in Flt3L-induced BMDCs (Fig. 1C).

Effect of extracellular ATP stimulation on the cytokine
production by BMDCs

Since cytokine production by DCs affects the activation
status of T cells after antigen presentation, we examined
cytokine production from ATP- and LPS-stimulated BMDCs.
We analyzed the production of IL-1β and IL-6, which are in-
flammatory cytokines; IL-12, which induces the differentiation
of T cells into Th1 cells; and IL-10, which has an immuno-
suppressive effect. When BMDCs were stimulated with LPS, a
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Figure 1. Effects of ATP stimulation on the cell surface molecules in BMDCs. A, GM-CSF-induced BMDCs were incubated with ATP (0, 0.1, 0.3,1 mM) for
24 h at 37 �C. The cell surface expression of MHC-II, CD86 was analyzed by flow cytometry. The relative means of fluorescence intensity were presented
(None = 1). B, GM-CSF-induced BMDCs or (C) Flt3L-induced BMDCs were incubated with ATP (1 mM) or LPS (100 ng/ml) for 24 h at 37 �C. The cell surface
expression of MHC-I, MHC-II, CD80, CD86, PD-L1, and PD-L2 was analyzed by flow cytometry (light gray fill, control IgG). The graphs presented under the
histogram pattern of flow cytometry are the relative means of fluorescence intensity (None = 1). Experiments (n = 3 or 4) were independently performed,
and the average value ± SD was presented. Statistical differences between groups were determined by Dunnett’s multiple comparisons tests. The com-
parisons were made with None groups. Asterisks depict a significant difference; *p < 0.05, **p < 0.01. p values are indicated in each figure panel. BMDC,
bone marrow-derived dendritic cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; MHC, major histocompatibility complex.
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ATP and adenosine cooperatively induce DC activation
time-dependent increase in the production of IL-1β, IL-6, IL-
12, and IL-10 was observed (Fig. 2, A–D). In contrast, the
production of these cytokines was not observed, or very little
was produced, in ATP-stimulated BMDCs (Fig. 2, A–D).

Role of P2X receptors in the activation of ATP-stimulated
BMDCs

Next, we examined the receptors involved in the ATP-
induced activation of BMDCs. Treatment with the pan-P2
receptor antagonist, PPADS, suppressed the ATP-induced
upregulation of MHC-I, MHC-II, CD80, and CD86 (Fig. 3A).
Quantitative RT-PCR analysis showed that the expression of
ATP receptors in the P2X (P2X1-P2X7) and P2Y (P2Y2, and
P2Y4) families in BMDCs were not affected by ATP stimula-
tion (Fig. S2). The mRNA expression of P2X6 and P2Y4 was
not detected in BMDCs (Fig. S2). Since P2X4 and P2X7 have
been reported to have several functions in immune cells, we
examined the effects of P2X4 and P2X7 receptor antagonists
on the ATP-induced upregulation of MHC-I, MHC-II, CD80,
and CD86. P2X4 receptor antagonist PSB12062 did not sup-
press the ATP-induced cell surface levels of these molecules
but enhanced the expression of CD86 (Fig. 3B). The P2X7
receptor antagonist A740003 suppressed the ATP-induced cell
surface MHC-I and MHC-II expression but did not affect the
expression of CD80 and CD86 (Fig. 3B). These results suggest
that the expression of MHC-I and MHC-II, but not that of
CD80 or CD86, is induced via P2X7 in ATP-stimulated
BMDCs.
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Role of adenosine in the activation of ATP-stimulated BMDCs

We investigated the possible effects of adenosine, an ATP
metabolite, on the ATP-induced expression of antigen
presentation-related proteins. We observed that BMDCs
expressed CD39 and CD73 on their cell surface (Fig. 4A),
which are responsible for metabolizing ATP to adenosine.
Treatment with the pan-adenosine receptor antagonist,
CGS15943, suppressed the ATP-induced upregulation of
MHC-I and MHC-II (Fig. 4B), whereas this treatment had no
effect on the ATP-induced upregulation of CD80 and CD86
(Fig. 4B). Treatment with the CD39 inhibitor POM-1 and the
CD73 inhibitor AMPCP also suppressed the ATP-induced
upregulation of MHC-I and MHC-II (Fig. 4C). Moreover,
1 mM adenosine treatment upregulated the cell surface
expression levels of both MHC-I and MHC-II on BMDCs
(Fig. 4D). These results suggest that ATP is metabolized to
adenosine by CD39 and CD73, and the generated adenosine is
required for the upregulation of MHC-I and MHC-II expres-
sion. Since the ATP-induced upregulation of MHC-I and
MHC-II expression was inhibited by P2X7 antagonists
(Fig. 3B), this suggested that both P2X7 receptor-mediated
stimulation and adenosine receptor-mediated stimulation
were required to induce the upregulation of MHC-I and
MHC-II by ATP stimulation. Since adenosine alone upregu-
lated MHC-I and MHC-II expression (Fig. 4D), it was thought
that a P2X7 receptor antagonist would not suppress ATP-
induced upregulation of MHC-I and MHC-II expression
because adenosine, which was generated from ATP, would
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Figure 3. Effects of P2 receptor antagonists on the cell surface molecules in BMDCs. A, GM-CSF-induced BMDCs were pretreated with PPADS (30 μM)
for 30 min at 37 �C, and then the cells were stimulated with ATP (1 mM) for 24 h at 37 �C. The cell surface expression levels of MHC-I, MHC-II, CD80, and
CD86 were analyzed by flow cytometry. B, GM-CSF-induced BMDCs were pretreated with P2X4 antagonist PSB12062 (5 μM) or P2X7 antagonists A740003
(30 μM) for 30 min, and then the cells were stimulated with ATP (1 mM) for 24 h at 37 �C. The cell surface expression levels of MHC-I, MHC-II, CD80, and
CD86 were analyzed by flow cytometry. Controls contain 0.1% DMSO as a vehicle of inhibitors. Experiments (n = 3–5) were independently performed and
the average value ± SD was presented. Statistical differences between groups were determined by Dunnett’s multiple comparisons test. The comparisons
were made with Control (ATP(+)) groups. Asterisks depict a significant difference; *p < 0.05, **p < 0.01. p-values are indicated in each figure panel. BMDC,
bone marrow-derived dendritic cell; DMSO, dimethyl sulfoxide; GM-CSF, granulocyte-macrophage colony-stimulating factor; MHC, major histocompatibility
complex; PPADS, pyridoxalphosphate-6-azophenyl-20 ,40-disulfonic acid.

ATP and adenosine cooperatively induce DC activation
induce upregulation of them. To explain this seeming
contradiction, we hypothesized a coordinated action of rela-
tively low concentrations of ATP and adenosine. We analyzed
the effects of ATP and adenosine using relatively low con-
centrations. Stimulation with ATP and adenosine alone did
not induce MHC-II expression at a concentration of 0.1 mM,
but simultaneous stimulation with 0.1 mM of ATP and
0.1 mM of adenosine significantly upregulated MHC-I and
MHC-II expression (Fig. 4E).
Effect of extracellular ATP stimulation on the T cell activation
ability of BMDCs

We examined the antigen presentation ability of ATP-
stimulated BMDCs by analyzing the mixed leukocyte reac-
tion (MLR). In this assay, the alloreactive CD4T cells and
CD8T cells from the lymph node are activated by BMDCs in
an MHC-I- and MHC-II-dependent manner, respectively (38).
The amounts of IL-2 and interferon-gamma (IFN-γ) released
in the coculture supernatants were analyzed. IL-2 production
was increased in the supernatant cocultured with the LPS-
stimulated BMDCs at ratios of 1:10 and 1:20, whereas a sig-
nificant enhancement of IL-2 production was not observed in
the supernatant cocultured with the ATP-stimulated BMDCs
compared to that with unstimulated BMDCs (Fig. 5A). At all
ratios examined, IFN-γ production was increased in the su-
pernatant cocultured with the ATP-stimulated BMDCs
compared to that with the unstimulated BMDCs (Fig. 5A).
Higher IFN-γ production was observed in the supernatant
cocultured with the LPS-stimulated BMDCs at 1:20, but not at
ratios of 1:5 and 1:10, compared to that with the unstimulated
BMDCs (Fig. 5A). At the 1:5 and 1:10 ratios, IFN-γ production
J. Biol. Chem. (2023) 299(4) 104587 5
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was much higher in the supernatant cocultured with the ATP-
stimulated BMDCs than that with the LPS-stimulated BMDCs
(Fig. 5A). Using the 1:5 ratio condition, we investigated the
effects of a P2 receptor antagonist, PPADS, and a P1 receptor
antagonist, CGS15943, which inhibited the ATP-induced
upregulation of cell surface antigen presentation-related mol-
ecules (Figs. 3A and 4B). IFN-γ production induced by ATP-
stimulated BMDCs was suppressed by both PPADS and
CGS15943 (Fig. 5B). These results suggest that ATP- and
adenosine-induced changes in BMDCs, which likely enhanced
the expression of antigen presentation molecules, augmented
IFN-γ production in the coculture supernatant of the MLR
assay.

We then examined whether these effects of ATP also
occurred in other types of DCs. The MLR assay results showed
that Flt3L-induced BMDCs had enhanced IFN-γ production
after being cocultured with T cells, similar to the results of
GM-CSF-induced BMDCs (Fig. 5C). We also examined the
effect of ATP on mouse spleen-resident DCs in the MLR assay.
The viability of spleen DCs was quite low after 1 mM ATP
stimulation but was not affected by 0.3 mM ATP treatment;
therefore, spleen DCs stimulated with 0.3 mM ATP were used
for the MLR assay. Enhanced IFN-γ production from T cells
was also observed when ATP-stimulated spleen DCs were
used. Unlike BMDCs, enhancement of IFN-γ production from
T cells was also observed when LPS-stimulated spleen DCs
were used at the 1:5 ratio (Fig. 5D).

Analysis of IFN-γ-producing cells induced by antigen
presentation

IFN-γ is well known to be produced by activated CD4T
(CD4+, CD3+ cells), CD8T (CD8+, CD3+ cells), and NK/NKT
cells (DX5+ cells). We investigated IFN-γ-expressing cells by
analyzing the intracellular IFN-γ by flow cytometry in the
coculture of BMDCs with lymph node cells at a 1:5 ratio for
24 h. IFN-γ-producing cells were observed in both CD4 and
CD8T cells after coculturing with BMDCs that were either
unstimulated, stimulated with ATP, or stimulated with LPS;
however, the percentage of IFN-γ+ cells in CD8T cells was
lower than that in CD4T cells (Fig. 6A). The ratio of NK/NKT
cells in the lymph node cells was low (less than 1.0%), and IFN-
γ production from NK/NKT cells was hardly observed
(Fig. 6A). Compared to unstimulated or LPS-stimulated
BMDCs, activation by ATP-stimulated BMDCs increased the
percentage of IFN-γ+ cells in both CD4 and CD8T cells
(Fig. 6B). We next investigated the activation of CD4 and
CD8T cells by ATP-stimulated BMDCs by analyzing the cell
surface expression of the activation marker CD69 in the
coculture of BMDCs with lymph node cells at a 1:5 ratio for
24 h. Coculture with ATP-stimulated BMDCs enhanced the
expression of CD69 in both CD4 and CD8T cells compared to
means of fluorescence intensity (None = 1). E, GM-CSF-induced BMDCs were in
at 37 �C. The cell surface expression levels of MHC-I and MHC-II were analyze
rescence intensity. Experiments (n = 3–4) were independently performed and t
were determined by Dunnett’s multiple comparisons test (B, C and E) or Stude
and C) or ATP(−), Adenosine(−) groups (E). Asterisks depict a significant differen
bone marrow-derived dendritic cell; GM-CSF, granulocyte-macrophage colony
that in cells cocultured with unstimulated BMDCs (Fig. 6C). In
contrast, BMDCs stimulated with LPS did not activate CD4 or
CD8T cells (Fig. 6C). These results indicate that ATP stimu-
lation of BMDCs enhances the activation of CD4 and CD8T
cells upon antigen presentation.

Discussion

In this study, we examined the effect of extracellular ATP on
the cell surface expression of antigen presentation-related
molecules and the antigen presentation function of DCs.
Previous reports have shown that ATP induces the activation
of DCs, but the precise action and its mechanism remained
unknown. We found that high concentrations of extracellular
ATP upregulated the expression of antigen-presenting mole-
cules (MHC-I and MHC-II) and co-stimulatory molecules
(CD80 and CD86) but not that of co-inhibitory molecules (PD-
L1 and PD-L2). These ATP-stimulated DCs induced the
activation of IFN-γ producing T cells upon antigen presenta-
tion. Additionally, we found that adenosine, which was
metabolized from ATP, was required for the ATP-induced
upregulation of MHC-I and MHC-II expression. Our results
indicate that when stimulated with high concentrations of
ATP, ATP and the metabolite adenosine are cooperatively
induced the upregulation of MHC-I and MHC-II, resulting in
the activation of DCs to induce IFN-γ production in T cells
(Fig. 7).

Several kinds of stimulations modulate the functions of
DCs. TLR stimulation is well known to enhance the antigen
presentation ability of DCs by regulating both cytokine pro-
duction and the cell surface expression of antigen
presentation-related proteins (31, 32). In this study, as previ-
ously reported, LPS stimulation strongly induced the upregu-
lation of the antigen-presenting molecules, MHC-I, MHC-II,
CD80, CD86, PD-L1, and PD-L2. We found that ATP stimu-
lation induced upregulation of MHC-I, MHC-II, CD80, and
CD86 expression; however, ATP did not induce an increase in
PD-L1 or PD-L2 expression in BMDCs. Activation of DCs is
known to induce the production of several cytokines. The
production of IL-6, IL-10, and IL-12 was strongly induced
upon LPS stimulation, whereas ATP stimulation induced little
or no production of these cytokines. These results indicate that
the activation pattern induced by ATP was different from that
induced by LPS stimulation.

Using the MLR assay, we demonstrated that ATP-
stimulated BMDCs induced higher levels of IFN-γ produc-
tion from T cells than those of unstimulated or LPS-stimulated
BMDCs cocultured at a 1:5 ratio. When lymph node cells were
cocultured with LPS-stimulated BMDCs, IFN-γ production
was enhanced at a ratio of 1:20, but not at ratios of 1:10 and
1:5. Since LPS stimulation promotes the expression of the
inhibitory factors, PD-L1 and PD-L2, as well as the production
cubated with (+) or without (−) ATP (0.1 mM) or adenosine (0.1 mM) for 24 h
d by flow cytometry. The expression level was analyzed by means of fluo-
he average value ± SD was presented. Statistical differences between groups
nt’s t test (D). The comparisons were made with Control (ATP(+)) groups (B
ce; *p < 0.05, **p < 0.01. p-values are indicated in each figure panel. BMDC,
-stimulating factor; MHC, major histocompatibility complex.
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Figure 7. Schematic overview of ATP-induced BMDC activation. High
concentrations of extracellular ATP upregulated the cell surface expression
of MHC-I, MHC-II, CD80, and CD86 but not of PD-L1 and PD-L2 on BMDCs.
ATP and adenosine, which were produced by CD39 and CD73 from ATP,
cooperatively induced upregulation of the cell surface MHC-I and MHC-II.
These ATP-stimulated BMDCs activate both CD4 and CD8T cells and pro-
mote IFN-γ production from these T cells. BMDC, bone marrow-derived
dendritic cell; IFN-γ, interferon-gamma; MHC, major histocompatibility
complex.

ATP and adenosine cooperatively induce DC activation
of IL-10, activation and IFN-γ production from the T cells may
be suppressed with a relatively high proportion of BMDCs in
the coculture. In contrast to the effects of LPS stimulation,
ATP stimulation did not induce the expression of these
inhibitory factors; thus, ATP-stimulated BMDCs may effec-
tively enhance the T cell activation of DCs even with a high
proportion of BMDCs in the coculture. A similar effect was
observed in Flt3L-induced BMDCs. Spleen DCs stimulated
with 0.3 mM ATP showed induction of IFN-γ production from
T cells, although LPS-stimulated spleen DCs also induced a
high level of IFN-γ production from T cells. These differences
may be related to the characteristics of the population of DCs
in the spleen, which constitutes a mixture of several types of
DCs. Furthermore, the maturation states of DCs may be var-
ied. In spleen DCs, a decrease in viability was observed with
the stimulation of 1 mM ATP. ATP has been reported to
induce cell death in some types of cells (36, 39). We observed
that 1 mM ATP stimulation resulted in decreased viability in
mature BMDCs. Spleen DCs may contain populations that are
likely more mature and therefore more susceptible to cell
death induced by ATP.

Activated Th1 CD4T cells, CD8T cells, NK cells, and NKT
cells are known to be capable of producing IFN-γ. We
observed that the CD4 and CD8T cells mainly expressed IFN-γ
determined by Tukey’s multiple comparison test. Asterisks depict a significant d
BMDC, bone marrow-derived dendritic cell; DMSO, dimethyl sulfoxide; Flt3L, F
stimulating factor; IFN-γ, interferon-gamma; LPS, lipopolysaccharide; MHC, ma
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in the MLR assay. The ratios of the IFN-γ+ cells in the CD4
and CD8T cells were increased after being cocultured with
ATP-stimulated BMDCs. We also found that the CD69
expression level in CD4 and CD8T cells increased after being
cocultured with ATP-stimulated BMDCs. These results sug-
gest that ATP-stimulated BMDCs activate CD4 and CD8T
cells through the MHC-T cell receptor interaction to induce
IFN-γ production. Since the percentage of IFN-γ+ cells in
CD8T cells was smaller than that in CD4T cells, the majority
of IFN-γ production may have been derived from CD4T cells.
IL-12 is well known to induce naive CD4T cell differentiation
in IFN-γ producing Th1 cells (40). In our study, although ATP
did not induce IL-12 production, ATP-stimulated BMDCs
induced IFN-γ production from CD4T cells. Induction of Th1
independent of IL-12 has also been reported (41). Thus, ATP-
stimulated BMDCs may induce IFN-γ-production mediated by
IL-12-independent Th1 cell differentiation.

In this study, PPADS, a pan-P2 receptor antagonist,
inhibited the ATP-induced upregulation of MHC-I, MHC-II,
CD80, and CD86. We examined the role of P2X4 and P2X7
receptors in the ATP-induced upregulation of MHC-I, MHC-
II, CD80, and CD86. We found that the ATP-induced upre-
gulation of cell surface MHC-I and MHC-II was inhibited by
the P2X7 antagonist, whereas the upregulation of CD80 and
CD86 was not affected. ATP may act on receptors other than
P2X7 and P2X4 to induce the expression of CD80 and CD86
in BMDCs. We observed that BMDCs expressed the P2 re-
ceptors, P2X2, P2X5, and P2Y2, in addition to P2X4 and P2X7.
Several studies have analyzed the functions of these P2 re-
ceptors. P2X2 receptors are mainly expressed in neurons and
are involved in neurotransmission (42). The function of P2X5
has not been well studied. P2Y2 receptors enhanced the
chemotaxis of eosinophils and DCs in a mouse model of
airway inflammation (43). ATP activates human monocyte-
derived DCs via the P2Y11 receptor (44). However, mice
lack the P2Y11 (45). These P2 receptors could be involved in
the ATP-induced upregulation of CD80 and CD86 in BMDCs.

We examined the involvement of adenosine, an ATP
metabolite. We found that the adenosine receptor antagonist
CGS15943 inhibited the ATP-induced expression of MHC-I
and MHC-II but did not affect the expression of CD80 and
CD86. These results indicate that both P2X7 and adenosine
receptor-mediated signaling are required for the upregulation
of MHC-I and MHC-II expression upon ATP stimulation.
BMDCs expressed CD39 and CD73, and inhibitors against
these molecules suppressed the action of ATP. These results
suggest that adenosine generated from ATP contributes to the
effects of ATP on MHC-I and MHC-II upregulation. The weak
effect of the CD73 inhibitor may be related to the contribution
of another ecto-alkaline phosphatase that converts ATP to
adenosine (46). There are four known adenosine receptors: A1,
A2a, A2b, and A3, which have been reported to have different
effects on DCs (33). Adenosine and A2 receptor agonists were
ifference; *p < 0.05, **p < 0.01. p-values are indicated in each figure panel.
MS-like tyrosine kinase 3 ligand; GM-CSF, granulocyte-macrophage colony-
jor histocompatibility complex; MLR, mixed leukocyte reaction.
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reported to induce the upregulation of MHC-I and MHC-II in
human monocyte-derived DCs. However, these adenosine-
stimulated DCs showed attenuated T cell activation in the
MLR assay, despite the induction of antigen-presenting
molecule expression (47). Adenosine has anti-inflammatory
effects and suppresses the function of several immune cells
(16, 21). Adenosine is also considered to be one of the causes
of immunosuppression in tumors (48). In our study, we found
that ATP and adenosine generated from ATP cooperatively
stimulate BMDCs, inducing T cell activation. Adenosine may
act in an inhibitory manner when stimulated alone but may
lead to DC activation when stimulated simultaneously with
ATP.

We observed that the upregulation of MHC-I and MHC-
II induced by 1 mM ATP was inhibited by both P2X7 re-
ceptor and adenosine receptor antagonists. However, the
P2X7 inhibitor should have no effect if the upregulation of
MHC-I and MHC-II was induced by adenosine alone
because we observed that 1 mM adenosine alone upregu-
lated MHC-I and MHC-II expression. Therefore, we hy-
pothesized that there is an enhancing effect of ATP and
adenosine signals. We observed that stimulation with
adenosine 0.1 mM or ATP 0.1 mM alone did not induce
upregulation of cell surface MHC-I and MHC-II. However,
the expression of MHC-I and MHC-II on cell surfaces did
increase when these two were stimulated simultaneously.
This finding suggests that relatively low concentrations
(0.1 mM) of ATP and adenosine cooperate to upregulate
MHC-I and MHC-II expression. After 1 mM ATP stimu-
lation, ATP and adenosine, which is generated from ATP,
may cooperatively induce the upregulation of MHC-I and
MHC-II. Since the generated adenosine is degraded by
extracellular metabolic enzymes such as adenosine deami-
nase or transported into the cell by transporters (49), the
concentration of adenosine generated after 1 mM ATP
stimulation may not be high enough to upregulate MHC
expression by itself. There have been reports of responses
requiring both ATP and adenosine. For instance, ATP and
adenosine are required for ATP-induced neutrophil migra-
tion (50, 51). There might be an interaction between
adenosine and ATP receptor signaling. Nevertheless, further
studies of the mechanisms of action of ATP in regulating
the expression of antigen presentation-related molecules are
necessary.

The extracellular ATP concentration has been reported to
be elevated in the tumor microenvironment (TME) (28), likely
produced by macrophages (18) or dead tumor cells (52). Since
IFN-γ production by CD4 and CD8T cells is important for
triggering the immune reaction to eliminate tumor cells (53),
ATP accumulation might stimulate DCs and trigger the
development of IFN-γ-producing T cells in the TME, thereby
enhancing immune responses against tumor cells. Extracel-
lular ATP stimulation is reported to induce activation of the
NLRP3 inflammasome and caspase-1 in TLR-stimulated DCs,
macrophages, and neutrophils that accumulate in the TME,
resulting in the production of IL-1β. This produced IL-1β
induces inflammation involved in anti-tumor activity through
the activation of T cells (23, 54). In our study, since IL-1β was
not produced by ATP stimulation, ATP-induced enhancement
of antigen presentation-related molecules might occur inde-
pendent of inflammasome activation. Some types of DCs have
been reported to suppress T cell activation by inducing
inhibitory factors. Several tumor-producing factors are known
to induce suppressive DCs (55). To develop novel anti-tumor
immune therapeutics, an adjuvant that appropriately acti-
vates DCs and induces efficient antigen presentation is
required (56). Although LPS-stimulated BMDCs did not
induce IFN-γ production from T cells when there was a high
proportion of BMDCs in the MLR assay, ATP-stimulated
BMDCs induced IFN-γ production from T cells even when
the ratio of DCs was increased. ATP may be a useful adjuvant
for inducing strong anti-tumor immunity. Further analysis is
necessary to elucidate the mechanisms of action of ATP as well
as the difference between ATP stimulation and LPS stimula-
tion on DCs.

In conclusion, our results demonstrated that high concen-
trations of extracellular ATP enhance the expression of
antigen-presenting and co-stimulatory molecules but not that
of co-inhibitory molecules. The upregulation of MHC-I and
MHC-II expression was mediated by ATP and its metabolite
adenosine. We further demonstrated that ATP-stimulated
DCs induced the activation of IFN-γ-producing T cells upon
antigen presentation. The mechanism of ATP-induced DC
activation may be a novel therapeutic target for modulating
DC-mediated immune response.
Experimental procedures

Materials

The following reagents were obtained the sources indicated:
ATP, adenosine, LPS (Serotype O55:B5) and PBS12062 from
Sigma-Aldrich; pyridoxalphosphate-6-azophenyl-20,40-disul-
fonic acid (PPADS), A740003, CGS15943, POM-1, adenosine
50-(α, β-methylene)diphosphate (AMPCP) from Cayman
Chemical; murine recombinant GM-CSF, APC-labeled anti-
mouse CD11c antibody (N418), FITC-labeled anti-mouse
MHC-II (I-Ak) antibody (10-3.6), FITC-labeled anti-mouse
MHC-I (H2-Kk) antibody (36-7-5), FITC-labeled anti-mouse
CD80 antibody (16-10A1), FITC-labeled anti-mouse CD86
antibody (GL-1), PE-labeled anti-mouse PD-L1 antibody
(10F.9G2), PE-labeled anti-mouse PD-L2 antibody (TY25),
FITC-labeled anti-mouse CD3ε antibody (145-2C11), APC-
and PerCP/Cyanine5.5-labeled anti-mouse CD4 antibody
(GK1.5), APC- and PE/Cyanine7-labeled anti-mouse CD8
antibody (53-6.7), PE-labeled anti-mouse CD69 antibody
(H1.2F3), PE-labeled anti-mouse IFN-γ antibody (W18272D),
APC-labeled CD49b antibody (DX5), ELISA kit for mouse
IFN-γ and mouse IL-1β from BioLegend; ELISA kit for mouse
IL-2, mouse IL-10, mouse IL-12 p70 and mouse IL-6 from
Thermo Fisher Scientific. All other chemicals were
J. Biol. Chem. (2023) 299(4) 104587 11
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commercial products of reagent grade. ATP, adenosine, and
LPS were dissolved in the culture medium. Inhibitors were
dissolved in dimethyl sulfoxide (DMSO) to prepare concen-
trated stock solutions.

Mice

Male B10.BR mice (H-2k) and male BALB/c mice (H-2d)
were obtained from Japan SLC (Hamamatsu, Japan), and all
mice were kept in an animal facility at Okayama University.
This study was approved by the Committee on Animal Ex-
periments of Okayama University (OKU-2018087, OKU-
2021754).

Preparation of BMDCs and spleen DCs

GM-CSF-induced BMDCs were prepared as previously
reported (57). Briefly, Bone marrow cells were collected
from the tibia and femur of mice. The cells were cultured in
RPMI-1640 medium containing 10% FBS and 50 μM
β-mercaptoethanol in the presence of 10 ng/ml mouse GM-
CSF at 37 �C in 5% CO2 for 7 days. To prepare Flt3L-
induced BMDCs, the bone marrow cells were cultured for
10 days in RPMI-1640 medium containing 10% FBS, 50 μM
β-mercaptoethanol in the presence of a one-fifth volume of
culture supernatant of B16-Flt3L cells (obtained from Dr
Paul Roche, National Institutes of Health) (58). For the
preparation of spleen DCs, Spleens were treated with
collagenase D (1 mg/ml) and DNase I (1 unit/ml) for
30 min at 37 �C. CD11c+ cells in the spleen cells were
isolated by using MojoSort mouse CD11c nanobeads and
MojoSort Magnet (BioLegend).

Flow cytometry

BMDCs were harvested and washed with FACS staining
medium (FACS-SM, PBS(−) containing 2% FBS). The cells
were incubated with fluorescent dye-conjugated antibodies in
FACS-SM on ice for 30 min. The cells were subsequently
washed three times. The cells were analyzed with a flow cy-
tometer (Gallios: Beckman Coulter).

Mixed lymphocyte reaction

Lymph nodes were collected from BALB/c mice, and single-
cell suspension was prepared by crushing the lymph nodes and
removing debris with a cell strainer (40 μm). The lymph node
cells used in this experiment comprised approximately 75% T
cells (CD3+ cells) and 25% B cells (B220+ cells). NK/NKT cells
(DX5+ cells) accounted for less than 1% of the total cells.
Among the T cells (CD3+ cells), approximately 70% were
CD4T cells (CD4+ cells), and 30% were CD8T cells (CD8+

cells). BMDCs or spleen DCs from B10.BR mice were stimu-
lated with ATP or LPS for 24 h at 37 �C. The cells were washed
with culture medium, and then BMDCs and lymph node cells
were cocultured at ratios of 1:5, 1:10, and 1:20 for 24 h at 37
�C. The culture supernatants were harvested and the amounts
of IL-2 and IFN-γ were analyzed by ELISA. To analyze the T
cell activation, the cells were harvested, and the cell surface
12 J. Biol. Chem. (2023) 299(4) 104587
expression levels of CD3ε, CD4 or CD8, and CD69 were
analyzed with a flow cytometer.

Measurement of intracellular IFN-γ expression by flow
cytometry

BMDCs and lymph node cells were cocultured for 24 h at 37
�C. To inhibit cytokine release, brefeldin A (10 μg/ml) was
added during the last 6 h prior. The cells were harvested, and
the cell surface CD11c, CD3ε, CD4 or CD8, and DX5 were
stained with the fluorescent-labeled antibodies. The cells were
fixed with fixation buffer (BioLegend) and then permeabilized
with permeabilization buffer (BioLegend) following the man-
ufacturer’s instructions. The cells were then stained with a PE-
labeled anti-IFN-γ antibody. The cells were analyzed with a
flow cytometer (Gallios: Beckman Coulter).

Measurement of cytokine production

The amounts of cytokines, IL-6, IL-10, IL-12, IL-1β, IFN-γ,
and IL-2, in culture supernatants were measured using ELISA
kits according to the manufacturer’s instructions.

Statistical analysis

Statistical significance for comparisons between the two groups
was determined using the Student’s t test. Comparisons among
multiple groups were performed by one-way ANOVA with Dun-
nett’smultiple comparison test orTukey’smultiple comparison test.
*p< 0.05 and **p< 0.01 were considered statistically significant.

Data availability

All the data contained within the manuscript.

Supporting information—This article contains supporting
information.
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