77 research outputs found

    Probing polarization states of primordial gravitational waves with CMB anisotropies

    Full text link
    We discuss the polarization signature of primordial gravitational waves imprinted in cosmic microwave background (CMB) anisotropies. The high-energy physics motivated by superstring theory or M-theory generically yield parity violating terms, which may produce a circularly polarized gravitational wave background (GWB) during inflation. In contrast to the standard prediction of inflation with un-polarized GWB, circularly polarized GWB generates non-vanishing TB and EB-mode power spectra of CMB anisotropies. We evaluate the TB and EB-mode power spectra taking into account the secondary effects and investigate the dependence of cosmological parameters. We then discuss current constraints on the circularly polarized GWB from large angular scales (l < 16) of the three year WMAP data. Prospects for future CMB experiments are also investigated based on a Monte Carlo analysis of parameter estimation, showing that the circular polarization degree, varepsilon, which is the asymmetry of the tensor power spectra between right- and left-handed modes normalized by the total amplitude, can be measured down to |varepsilon| 0.35(r/0.05)^{-0.6}.Comment: 28 pages, 9 figures, Accepted for publication in JCA

    Penrose limits and Green-Schwarz strings

    Get PDF
    We discuss the Green-Schwarz action for type IIB strings in general plane-wave backgrounds obtained as Penrose limits from any IIB supergravity solutions with vanishing background fermions. Using the normal-coordinate expansion in superspace, we prove that the light-cone action is necessarily quadratic in the fermionic coordinates. This proof is valid for more general pp-wave backgrounds under certain conditions. We also write down the complete quadratic action for general bosonic on-shell backgrounds in a form in which its geometrical meaning is manifest both in the Einstein and string frames. When the dilaton and 1-form field strength are vanishing, and the other field strengths are constant, our string-frame action reduces, up to conventions, to the one which has been written down using the supercovariant derivative.Comment: 18 pages, latex, no figures; (v2) relation to ref.14 clarified; (v3) typos corrected, minor change

    LDL-C/HDL-C Ratio Predicts Carotid Intima-Media Thickness Progression Better Than HDL-C or LDL-C Alone

    Get PDF
    High-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) are strong predictors of atherosclerosis. Statin-induced changes in the ratio of LDL-C to HDL-C (LDL-C/HDL-C) predicted atherosclerosis progression better than LDL-C or HDL-C alone. However, the best predictor of subclinical atherosclerosis remains unknown. Our objective was to investigate this issue by measuring changes in carotid intima-media thickness (IMT). A total of 1,920 subjects received health examinations in 1999, and were followed up in 2007. Changes in IMT (follow-up IMT/baseline IMT × 100) were measured by ultrasonography. Our results showed that changes in IMT after eight years were significantly related to HDL-C (inversely, P < 0.05) and to LDL-C/HDL-C ratio (P < 0.05). When the LDL-C/HDL-C ratios were divided into quartiles, analysis of covariance showed that increases in the ratio were related to IMT progression (P < 0.05). This prospective study demonstrated the LDL-C/HDL-C ratio is a better predictor of IMT progression than HDL-C or LDL-C alone

    Influence of post-disaster evacuation on incidence of hyperuricemia in residents of Fukushima Prefecture: the Fukushima Health Management Survey

    Get PDF
    Aim: After the Great East Japan Earthquake, over 160, 000 residents in Fukushima Prefecture were forced to evacuate the area around the Fukushima Daiichi power plant following nuclear accident there. Health problems in these evacuees have since become a major issue. We have examined the association between evacuation and incidence of hyperuricemia among residents in Fukushima. Methods: We conducted a cohort study of residents aged 40–90 years without hyperuricemia at the time of the Fukushima disaster. Among 8173 residents who met the inclusion criteria before the disaster, 4789 residents (men: 1971, women: 2818; follow-up duration: 1.38 years; and follow-up rate: 58.6%) remained available for follow-up examinations at the end of March 2013. The main endpoint was incidence of hyperuricemia, defined by the Japanese committee guidelines, using local health data from before and after the disaster. We divided participants by evacuation status and compared outcomes between groups. Using a logistic regression model, we estimated the odds ratio for incidence of hyperuricemia, adjusting for potential confounders, age, gender, waist circumference, physical activity, and alcohol consumption. Results: Incidence of hyperuricemia was higher in evacuees (men 10.1%; women 1.1%) than in non-evacuees (men 7.4%, women 1.0%). Evacuees had higher body mass index, waist circumference, triglycerides, LDL-cholesterol, fasting plasma glucose, HbA1c, and lower HDL-cholesterol after the disaster than non-evacuees. We found that evacuation was associated with incidence of hyperuricemia (adjusted odds ratio: 1.38; 95% confidence interval: 1.03-1.86). Conclusion: This is the first study to demonstrate an association between evacuation after a disaster and increased incidence of hyperuricemia

    Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins

    Get PDF
    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species

    Highly enantioselective copper(I)-catalyzed conjugate addition of 1,3-diynes to a,b-unsaturated trifluoromethyl ketones

    Get PDF
    [EN] The conjugate diynylation of a,b-unsaturated trifluoromethyl ketones is carried out in the presence of a low catalytic load (2.5 mol%) of a copper(I)–MeOBIPHEP complex, triethylamine and a terminal 1,3-diyne. Pre-metalation of the terminal 1,3-diyne with stoichiometric or higher amounts of dialkylzinc reagent is not required. The corresponding internal diynes bearing a propargylic stereogenic center are obtained with good yields and excellent enantioselectivities.Financial support from the Ministerio de Economia y Competitividad (MINECO-Gobierno de Espana) and FEDER (EU) (CTQ2013-47494-P) and from Generalitat Valenciana (ISIC2012/001) is gratefully acknowledged. A.S.-M. thanks the MINECO for a predoctoral grant (FPI program). Access to NMR and MS facilities from the Servei Central de Suport a la Investigacio Experimental (SCSIE)-UV is also acknowledged.Sanz-Marco, A.; Blay, G.; Muñoz Roca, MDC.; Pedro, J. (2015). Highly enantioselective copper(I)-catalyzed conjugate addition of 1,3-diynes to a,b-unsaturated trifluoromethyl ketones. Chemical Communications. (51):8958-8961. https://doi.org/10.1039/C5CC01676BS8958896151Shi Shun, A. L. K., & Tykwinski, R. R. (2006). Synthesis of Naturally Occurring Polyynes. Angewandte Chemie International Edition, 45(7), 1034-1057. doi:10.1002/anie.200502071Modern Acetylene Chemistry, ed. P. J. Stang and F. Diederich, VCH, Weinheim, 1995Sindhu, K. S., & Anilkumar, G. (2014). Recent advances and applications of Glaser coupling employing greener protocols. RSC Adv., 4(53), 27867-27887. doi:10.1039/c4ra02416hJung, H.-J., Min, B.-S., Park, J.-Y., Kim, Y.-H., Lee, H.-K., & Bae, K.-H. (2002). Gymnasterkoreaynes A−F, Cytotoxic Polyacetylenes fromGymnasterkoraiensis. Journal of Natural Products, 65(6), 897-901. doi:10.1021/np0104018Mayer, S. F., Steinreiber, A., Orru, R. V. A., & Faber, K. (2002). Chemoenzymatic Asymmetric Total Syntheses of Antitumor Agents (3R,9R,10R)- and (3S,9R,10R)-Panaxytriol and (R)- and (S)-Falcarinol fromPanaxginsengUsing an Enantioconvergent Enzyme-Triggered Cascade Reaction. The Journal of Organic Chemistry, 67(26), 9115-9121. doi:10.1021/jo020073wSatoh, Y., Satoh, M., Isobe, K., Mohri, K., Yoshida, Y., & Fujimoto, Y. (2007). Studies on Panax Acetylenes: Absolute Structure of a New Panax Acetylene, and Inhibitory Effects of Related Acetylenes on the Growth of L-1210 Cells. CHEMICAL & PHARMACEUTICAL BULLETIN, 55(4), 561-564. doi:10.1248/cpb.55.561McLaughlin, N. P., Butler, E., Evans, P., Brunton, N. P., Koidis, A., & Rai, D. K. (2010). A short synthesis of (+) and (−)-falcarinol. Tetrahedron, 66(51), 9681-9687. doi:10.1016/j.tet.2010.10.049Shin, D., Yang, J.-E., Lee, S. B., & Nho, C. W. (2010). SAR studies of gymnasterkoreayne derivatives with cancer chemopreventive activities. Bioorganic & Medicinal Chemistry Letters, 20(24), 7549-7552. doi:10.1016/j.bmcl.2010.07.066Nielsen, M. B., & Diederich, F. (2005). Conjugated Oligoenynes Based on the Diethynylethene Unit. Chemical Reviews, 105(5), 1837-1868. doi:10.1021/cr9903353Wan, W. B., Brand, S. C., Pak, J. J., & Haley, M. M. (2000). Synthesis of Expanded Graphdiyne Substructures. Chemistry - A European Journal, 6(11), 2044-2052. doi:10.1002/1521-3765(20000602)6:113.0.co;2-yWest, K., Wang, C., Batsanov, A. S., & Bryce, M. R. (2008). Carbon-rich molecules: synthesis and isolation of aryl/heteroaryl terminal bis(butadiynes) (HCC–CC–Ar–CC–CCH) and their applications in the synthesis of oligo(arylenebutadiynylene) molecular wires. Organic & Biomolecular Chemistry, 6(11), 1934. doi:10.1039/b802968gYu, D.-G., de Azambuja, F., Gensch, T., Daniliuc, C. G., & Glorius, F. (2014). The CH Activation/1,3-Diyne Strategy: Highly Selective Direct Synthesis of Diverse Bisheterocycles by RhIIICatalysis. Angewandte Chemie International Edition, 53(36), 9650-9654. doi:10.1002/anie.201403782Lee, N.-K., Yun, S. Y., Mamidipalli, P., Salzman, R. M., Lee, D., Zhou, T., & Xia, Y. (2014). Hydroarylation of Arynes Catalyzed by Silver for Biaryl Synthesis. Journal of the American Chemical Society, 136(11), 4363-4368. doi:10.1021/ja500292xYun, S. Y., Wang, K.-P., Lee, N.-K., Mamidipalli, P., & Lee, D. (2013). Alkane C–H Insertion by Aryne Intermediates with a Silver Catalyst. Journal of the American Chemical Society, 135(12), 4668-4671. doi:10.1021/ja400477rHuang, G., Xie, K., Lee, D., & Xia, Y. (2012). Reactivity of Alkynyl Metal Carbenoids: DFT Study on the Pt-Catalyzed Cyclopropanation of Propargyl Ester Containing 1,3-Diynes. Organic Letters, 14(15), 3850-3853. doi:10.1021/ol301497vGupta, S., Agarwal, P. K., Saifuddin, M., & Kundu, B. (2011). Hydro-amination/-amidation of 1,3-diynes with indoles/azoles/amides under modified Ullmann conditions: stereo- and regio-selective synthesis of N-alkenynes via N–H bond activation. Tetrahedron Letters, 52(44), 5752-5757. doi:10.1016/j.tetlet.2011.08.079Cho, E. J., Kim, M., & Lee, D. (2006). Reactivity and Selectivity of 1,3-Diyn-6-enes in Electrophilic Transition Metal-Catalyzed Reactions. Organic Letters, 8(23), 5413-5416. doi:10.1021/ol062335cTrost, B. M., & Weiss, A. H. (2009). The Enantioselective Addition of Alkyne Nucleophiles to Carbonyl Groups. Advanced Synthesis & Catalysis, 351(7-8), 963-983. doi:10.1002/adsc.200800776Blay, G., Monleon, A., & Pedro, J. (2009). Recent Developments in Asymmetric Alkynylation of Imines. Current Organic Chemistry, 13(15), 1498-1539. doi:10.2174/138527209789177734Knöpfel, T. F., Zarotti, P., Ichikawa, T., & Carreira, E. M. (2005). Catalytic, Enantioselective, Conjugate Alkyne Addition. Journal of the American Chemical Society, 127(27), 9682-9683. doi:10.1021/ja052411rYazaki, R., Kumagai, N., & Shibasaki, M. (2010). Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,β-Unsaturated Thioamides. Journal of the American Chemical Society, 132(30), 10275-10277. doi:10.1021/ja105141xYazaki, R., Kumagai, N., & Shibasaki, M. (2011). Enantioselective Synthesis of a GPR40 Agonist AMG 837 via Catalytic Asymmetric Conjugate Addition of Terminal Alkyne to α,β-Unsaturated Thioamide. Organic Letters, 13(5), 952-955. doi:10.1021/ol102998wSanz-Marco, A., García-Ortiz, A., Blay, G., & Pedro, J. R. (2014). Catalytic asymmetric conjugate addition of terminal alkynes to β-trifluoromethyl α,β-enones. Chem. Commun., 50(18), 2275-2278. doi:10.1039/c3cc48508kSanz-Marco, A., García-Ortiz, A., Blay, G., Fernández, I., & Pedro, J. R. (2013). Highly Enantioselective Copper(I)-Catalyzed Conjugate Addition of Terminal Alkynes to 1,1-Difluoro-1-(phenylsulfonyl)-3-en-2-ones: New Ester/Amide Surrogates in Asymmetric Catalysis. Chemistry - A European Journal, 20(3), 668-672. doi:10.1002/chem.201303920Nishimura, T., Guo, X.-X., Uchiyama, N., Katoh, T., & Hayashi, T. (2008). Steric Tuning of Silylacetylenes and Chiral Phosphine Ligands for Rhodium-Catalyzed Asymmetric Conjugate Alkynylation of Enones. Journal of the American Chemical Society, 130(5), 1576-1577. doi:10.1021/ja710540sNishimura, T., Sawano, T., & Hayashi, T. (2009). Asymmetric Synthesis of β-Alkynyl Aldehydes by Rhodium-Catalyzed Conjugate Alkynylation. Angewandte Chemie International Edition, 48(43), 8057-8059. doi:10.1002/anie.200904486Fillion, E., & Zorzitto, A. K. (2009). Enantioselective Rhodium-Catalyzed Conjugate Alkynylation of 5-Benzylidene Meldrum’s Acids with TMS-acetylene. Journal of the American Chemical Society, 131(41), 14608-14609. doi:10.1021/ja905336pBlay, G., Cardona, L., Pedro, J. R., & Sanz-Marco, A. (2012). Enantioselective Zinc-Mediated Conjugate Addition of Terminal Alkynes to Enones. Chemistry - A European Journal, 18(41), 12966-12969. doi:10.1002/chem.201201765Blay, G., Muñoz, M. C., Pedro, J. R., & Sanz-Marco, A. (2013). Enantioselective Synthesis of 4-Substituted Dihydrocoumarins through a Zinc Bis(hydroxyamide)-Catalyzed Conjugate Addition of Terminal Alkynes. Advanced Synthesis & Catalysis, 355(6), 1071-1076. doi:10.1002/adsc.201201120Cui, S., Walker, S. D., Woo, J. C. S., Borths, C. J., Mukherjee, H., Chen, M. J., & Faul, M. M. (2010). Practical Asymmetric Conjugate Alkynylation of Meldrum’s Acid-Derived Acceptors: Access to Chiral β-Alkynyl Acids. Journal of the American Chemical Society, 132(2), 436-437. doi:10.1021/ja909105sKwak, Y.-S., & Corey, E. J. (2004). Catalytic Enantioselective Conjugate Addition of Trimethylsilylacetylene to 2-Cyclohexen-1-one. Organic Letters, 6(19), 3385-3388. doi:10.1021/ol048623vLarionov, O. V., & Corey, E. J. (2010). Ni(II)-Catalyzed Enantioselective Conjugate Addition of Acetylenes to α,β-Enones. Organic Letters, 12(2), 300-302. doi:10.1021/ol902643wReber, S., Knöpfel, T. F., & Carreira, E. M. (2003). Enantioselective total synthesis of (R)-strongylodiols A and B. Tetrahedron, 59(35), 6813-6817. doi:10.1016/s0040-4020(03)00905-0Trost, B. M., Chan, V. S., & Yamamoto, D. (2010). Enantioselective ProPhenol-Catalyzed Addition of 1,3-Diynes to Aldehydes to Generate Synthetically Versatile Building Blocks and Diyne Natural Products. Journal of the American Chemical Society, 132(14), 5186-5192. doi:10.1021/ja910656bTurlington, M., Du, Y., Ostrum, S. G., Santosh, V., Wren, K., Lin, T., … Pu, L. (2011). From Highly Enantioselective Catalytic Reaction of 1,3-Diynes with Aldehydes to Facile Asymmetric Synthesis of Polycyclic Compounds. Journal of the American Chemical Society, 133(30), 11780-11794. doi:10.1021/ja204289qGraham, E. R., & Tykwinski, R. R. (2011). Chiral Propargyl Alcohols via the Enantioselective Addition of Terminal Di- and Triynes to Aldehydes. The Journal of Organic Chemistry, 76(16), 6574-6583. doi:10.1021/jo2008719Zheng, B., Li, S.-N., Mao, J.-Y., Wang, B., Bian, Q.-H., Liu, S.-Z., … Wang, M. (2012). Highly Enantioselective Addition of 1,3-Diynes to Aldehydes Catalyzed by a Zinc-Amino Alcohol Complex. Chemistry - A European Journal, 18(30), 9208-9211. doi:10.1002/chem.201200728Liu, T.-L., Ma, H., Zhang, F.-G., Zheng, Y., Nie, J., & Ma, J.-A. (2011). Catalytic enantioselective addition of terminal 1,3-diynes to aromatic ketones: facile access to chiral nonracemic tertiary alcohols. Chemical Communications, 47(48), 12873. doi:10.1039/c1cc15968bLiu, T.-L., Zhang, H.-X., Zheng, Y., Yao, Q., & Ma, J.-A. (2012). Catalytic enantioselective addition of terminal 1,3-diynes to N-sulfonyl aldimines: access to chiral diynylated carbinamines. Chemical Communications, 48(100), 12234. doi:10.1039/c2cc37290hZhang, F.-G., Ma, H., Zheng, Y., & Ma, J.-A. (2012). Zinc-mediated enantioselective addition of terminal 1,3-diynes to N-arylimines of trifluoropyruvates. Tetrahedron, 68(37), 7663-7669. doi:10.1016/j.tet.2012.05.086Zhang, F.-G., Ma, H., Nie, J., Zheng, Y., Gao, Q., & Ma, J.-A. (2012). Enantioselective Diynylation of Cyclic N-Acyl Ketimines: Access to Chiral Trifluoromethylated Tertiary Carbinamines. Advanced Synthesis & Catalysis, 354(8), 1422-1428. doi:10.1002/adsc.201100926Nie, J., Guo, H.-C., Cahard, D., & Ma, J.-A. (2011). Asymmetric Construction of Stereogenic Carbon Centers Featuring a Trifluoromethyl Group from Prochiral Trifluoromethylated Substrates. Chemical Reviews, 111(2), 455-529. doi:10.1021/cr100166aCahard, D., Xu, X., Couve-Bonnaire, S., & Pannecoucke, X. (2010). Fluorine & chirality: how to create a nonracemic stereogenic carbon–fluorine centre? Chem. Soc. Rev., 39(2), 558-568. doi:10.1039/b909566gKirk, K. L. (2008). Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments. Organic Process Research & Development, 12(2), 305-321. doi:10.1021/op700134jMa, J.-A., & Cahard, D. (2008). Update 1 of: Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chemical Reviews, 108(9), PR1-PR43. doi:10.1021/cr800221vPurser, S., Moore, P. R., Swallow, S., & Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chem. Soc. Rev., 37(2), 320-330. doi:10.1039/b610213cMorrill, L. C., Smith, S. M., Slawin, A. M. Z., & Smith, A. D. (2014). Isothiourea-Mediated Asymmetric Functionalization of 3-Alkenoic Acids. The Journal of Organic Chemistry, 79(4), 1640-1655. doi:10.1021/jo402591vYeh, P.-P., Daniels, D. S. B., Cordes, D. B., Slawin, A. M. Z., & Smith, A. D. (2014). Isothiourea-Mediated One-Pot Synthesis of Trifluoromethyl Substituted 2-Pyrones. Organic Letters, 16(3), 964-967. doi:10.1021/ol403697hMorrill, L. C., Douglas, J., Lebl, T., Slawin, A. M. Z., Fox, D. J., & Smith, A. D. (2013). Isothiourea-mediated asymmetric Michael-lactonisation of trifluoromethylenones: a synthetic and mechanistic study. Chemical Science, 4(11), 4146. doi:10.1039/c3sc51791hPei, Z., Zheng, Y., Nie, J., & Ma, J.-A. (2010). Chiral Brønsted acid-catalyzed regio- and enantioselective arylation of α,β-unsaturated trifluoromethyl ketones. Tetrahedron Letters, 51(35), 4658-4661. doi:10.1016/j.tetlet.2010.06.132Sasaki, S., Yamauchi, T., & Higashiyama, K. (2010). Dy(OTf)3/Pybox-catalyzed enantioselective Friedel–Crafts alkylation of indoles with α,β-unsaturated trifluoromethyl ketones. Tetrahedron Letters, 51(17), 2326-2328. doi:10.1016/j.tetlet.2010.02.121Li, P., Chai, Z., Zhao, S.-L., Yang, Y.-Q., Wang, H.-F., Zheng, C.-W., … Zhu, S.-Z. (2009). Highly enantio- and diastereoselective synthesis of α-trifluoromethyldihydropyrans using a novel bifunctional piperazine-thiourea catalyst. Chemical Communications, (47), 7369. doi:10.1039/b915210eZheng, C., Li, Y., Yang, Y., Wang, H., Cui, H., Zhang, J., & Zhao, G. (2009). Highly Efficient Asymmetric Epoxidation of Electron-Deficient α,β-Enones and Related Applications to Organic Synthesis. Advanced Synthesis & Catalysis, 351(10), 1685-1691. doi:10.1002/adsc.200900041Zhang, G.-W., Meng, W., Ma, H., Nie, J., Zhang, W.-Q., & Ma, J.-A. (2011). Catalytic Enantioselective Alkynylation of Trifluoromethyl Ketones: Pronounced Metal Fluoride Effects and Implications of Zinc-to-Titanium Transmetallation. Angewandte Chemie International Edition, 50(15), 3538-3542. doi:10.1002/anie.201007341Liu, Z.-J., & Liu, J.-T. (2008). Asymmetric synthesis of either diastereomer of trifluoromethylated allylic amines by the selective reduction of trifluoromethyl α,β-unsaturated N-tert-butanesulfinyl ketoimines. Chemical Communications, (41), 5233. doi:10.1039/b810459jWang, X.-J., Zhao, Y., & Liu, J.-T. (2007). Regiospecific Organocatalytic Asymmetric Aldol Reaction of Methyl Ketones and α,β-Unsaturated Trifluoromethyl Ketones. Organic Letters, 9(7), 1343-1345. doi:10.1021/ol070217zNenajdenko, V. G., Smolko, K. I., & Balenkova, E. S. (2001). Enantioselective reduction of α,β-unsaturated ketones bearing the trifluoromethyl group. Tetrahedron: Asymmetry, 12(9), 1259-1266. doi:10.1016/s0957-4166(01)00209-9Wang, H., Yang, K.-F., Li, L., Bai, Y., Zheng, Z.-J., Zhang, W.-Q., … Xu, L.-W. (2013). Modulation of Silver-Titania Nanoparticles on Polymethylhydrosiloxane-based Semi-Interpenetrating Networks for Catalytic Alkynylation of Trifluoromethyl Ketones and Aromatic Aldehydes in Water. ChemCatChem, 6(2), 580-591. doi:10.1002/cctc.20130087

    ELECTROCHEMICAL POTENTIALS OF NITRIFIED STEELS

    No full text

    RELATIONSHIP BETWEEN TWO CLASSES OF IRON NITRIDE

    No full text

    ATOMIC HYDROGEN OCCLUDED IN IRON NITRIDE

    No full text
    corecore