We discuss the polarization signature of primordial gravitational waves
imprinted in cosmic microwave background (CMB) anisotropies. The high-energy
physics motivated by superstring theory or M-theory generically yield parity
violating terms, which may produce a circularly polarized gravitational wave
background (GWB) during inflation. In contrast to the standard prediction of
inflation with un-polarized GWB, circularly polarized GWB generates
non-vanishing TB and EB-mode power spectra of CMB anisotropies. We evaluate the
TB and EB-mode power spectra taking into account the secondary effects and
investigate the dependence of cosmological parameters. We then discuss current
constraints on the circularly polarized GWB from large angular scales (l < 16)
of the three year WMAP data. Prospects for future CMB experiments are also
investigated based on a Monte Carlo analysis of parameter estimation, showing
that the circular polarization degree, varepsilon, which is the asymmetry of
the tensor power spectra between right- and left-handed modes normalized by the
total amplitude, can be measured down to |varepsilon| 0.35(r/0.05)^{-0.6}.Comment: 28 pages, 9 figures, Accepted for publication in JCA