NIH Public Access
Author Manuscript
Mamm Genome. Author manuscript; available in PMC 2011 October 8.

Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins

Roger S. Holmes
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301, USA
Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD, Australia
Matthew W. Wright
European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
Stanley J. F. Laulederkind
Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
Laura A. Cox
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301, USA
Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
Masakiyo Hosokawa
Laboratory of Drug Metabolism and Biopharmaceutics, Chiba Institute of Science, Choshi, Chiba, Japan
Teruko Imai
Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
Shun Ishibashi
Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
Richard Lehner
CIHR Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada

Masao Miyazaki
The Institute of Glycoscience, Tokai University, Kanagawa, Japan
Everett J. Perkins
Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA

Phillip M. Potter

[^0]
Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN, USA

Matthew R. Redinbo
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Jacques Robert
Laboratoire de Pharmacologie, Institut Bergonié, Bordeaux Cedex, France
Tetsuo Satoh
Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
Tetsuro Yamashita
Department of Agro-bioscience, Iwate University, Morioka, Japan
Bingfan Yan
Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA

Tsuyoshi Yokoi
Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan

Rudolf Zechner
Institute of Molecular Biosciences, University of Graz, Graz, Austria
Lois J. Maltais
The Jackson Laboratory, Bar Harbor, ME, USA

Abstract

Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CESI). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Cesla) that reflected gene relatedness among rodent species (e.g., mouse and rat Cesla). Pseudogenes were named by adding " P " and a number to the human gene name (e.g., human CESIP1) or by using a new letter followed by $p s$ for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CESI_AB119995 or mouse Cesle_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming $C E S$ genes from other mammalian species.

Introduction

Five families of mammalian carboxylesterases (CES; E.C.3.1.1.1) have been described, including CES1, the major liver enzyme (Ghosh 2000; Holmes et al. 2009a; Munger et al. 1991; Shibita et al. 1993); CES2, the major intestinal enzyme (Holmes et al. 2009a; Langmann et al. 1997; Schewer et al. 1997); CES3, expressed in brain, liver, and colon (Holmes et al. 2010; Sanghani et al. 2004); CES5 (also called CES7 or cauxin), a major
urinary protein of the domestic cat also present in human tissues (Holmes et al. 2008a; Miyazaki et al. 2003, 2006; Zhang et al. 2009); and CES6, a predicted CES-like enzyme in brain (Clark et al. 2003; Holmes et al. 2009a; reviewed by Williams et al. 2010). These enzymes catalyze hydrolytic and transesterification reactions with xenobiotics, anticancer prodrugs, and narcotics (Ohtsuka et al. 2003; Redinbo and Potter 2005; Satoh and Hosokawa 1998, 2006; Satoh et al. 2002), the conversion of lung alveolar surfactant (Ruppert et al. 2006), and several lipid metabolic reactions (Becker et al. 1994; Diczfalusy et al. 2001; Ghosh 2000; Hosokawa et al. 2007; Tsujita and Okuda 1993); they may also assist with the assembly of low-density lipoprotein particles in liver (Wang et al. 2007).

Structures for human and animal CES genes have been reported, including rodent CESI- and CES2-"like" genes (Dolinsky et al. 2001; Ghosh et al. 1995; Hosokawa et al. 2007) and human CES1 and CES2 genes (Becker et al. 1994; Ghosh 2000; Langmann et al. 1997; Marsh et al. 2004). Predicted gene structures have been also described for the human CES3, CES5, and CES6 genes, which are localized with CES1 and CES2 in two contiguous CES gene clusters on human chromosome 16 (Holmes et al. 2008a, 2009a, b, 2010). In addition, a CES1-like pseudogene (currently designated CES4) is located with the CES1-CES5 gene cluster (Yan et al. 1999). Mammalian CES genes usually contain 12-14 exons of DNA encoding CES enzyme sequences which may be shuffled during mRNA synthesis, generating several CES transcripts and enzymes encoded by each of the CES genes (see Thierry-Mieg and Thierry-Mieg 2006). There are significant sequence similarities for the five CES families, especially for key regions previously identified for human liver CES1 (Bencharit et al. 2003, 2006; Fleming et al. 2005). Three-dimensional structural analyses of human CES1 have identified three major ligand binding sites, including the broadspecificity active site, the "side door," and the "Z-site," where substrates, fatty acids, and cholesterol analogs, respectively, are bound; and an active site `gate', which may facilitate product release following catalysis (Bencharit et al. 2003, 2006; Fleming et al. 2005).

Because of the confusion associated with the current nomenclature for mammalian CES genes, particularly for mouse and rat Ces genes where significant gene duplication events have generated a large number of Cesl-like and Ces2-like genes (Berning et al. 1985; Dolinsky et al. 2001; Ghosh et al. 1995; Hosokawa et al. 2007; Satoh and Hosokawa 1995), this article proposes a new nomenclature system that enables easy identification of $C E S$ family members for this enzyme. The nomenclature follows the guidelines of the human, mouse, and rat gene nomenclature committees and allocates a new name for each human (CES) or mouse and rat (Ces) gene. It also names and identifies the gene family origin for identified CES pseudogenes and provides a system for naming transcript iso-forms derived from each of the CES genes. The nomenclature has the flexibility to accommodate new human, mouse, and rat $C E S$ genes and will assist further research into the structure, function, and evolution of these gene families as well as serve as a model for naming $C E S$ genes from other mammalian species.

Guiding principles for the new CES nomenclature

The new nomenclature system for human, mouse, and rat CES genes and enzymes is based on the identification of homolog gene families and a subsequent allocation of a unique gene name for each of the genes observed from genome databases or reported from previous studies. It follows the guidelines of the human, mouse, and rat gene nomenclature committees and recommends the naming of homolog CES or Ces genes among species. The italicized root symbol "CES" for human and "Ces" for mouse and rat genes were used, followed by an number describing the gene family (examples include CESI for human CES family 1 or Ces 1 for mouse and rat Ces family 1 genes) (Tables 1, 2, 3). For mammalian genomes in which multiple genes were identified or a gene required a name that clashed
with an existing name, a capital letter (for human genes) (e.g., CES4A) or a lower-case letter (for mouse and rat genes) (e.g., Cesla, Ceslb for multiple mouse Cesl-like genes) was added after the number. The letter used for multiple genes reflected the relatedness of the genes across species (e.g., reflecting higher degrees of identity for mouse and rat Cesla genes). When a human CES pseudogene was identified, a capital "P" and a number were added to the gene name (e.g., CESIP1), whereas for mouse and rat Ces pseudogenes, a unique lower-case letter was used followed by "-ps" (e.g., Ces $2 d-p s$). Transcript iso-forms of human (CES) and mouse and rat (Ces) gene transcripts were designated by following the gene name with the GenBank transcript ID, such as human CES1_AB119997 and CES1_AB187225, which differs from the current nomenclature used for human CES1 isoforms (CESIA1 and CES1A2, respectively) (see Table 1).

Human CES genes

Table 1 summarizes the locations and exonic structures for human $C E S$ genes based upon previous reports for human CES1 and CES2 (Becker et al. 1994; Ghosh 2000; Langmann et al. 1997; Marsh et al. 2004) and predictions for human CES3 (Holmes et al. 2010), CES4A (Holmes et al. 2009a), and CES5A (Holmes et al. 2008a) [the February 2009 human reference sequence (GRCh37) was used in this study (Rhead et al. 2010)]. Human CES1P1 (a CES1-like pseudogene), CESI, and CES5A were located in a cluster (cluster 1) on chromosome 16, while CES2, CES3, and CES4A were in a separate cluster (cluster 2) on the same chromosome. Cluster 1 CES genes (CES1 and CES5A) were transcribed on the negative strand, whereas cluster 2 genes (CES2, CES3, and CES4A) were transcribed on the positive strand. Figure 1 summarizes the predicted exonic start sites for human $C E S$ genes, with CES1 and CES4A containing 14 exons, CES3 and CES5A 13 exons, and CES2 with 12 exons. These exon start sites were in identical or similar positions to those reported for CES1 (Ghosh 2000; March et al. 2004). Figure 2 shows the comparative structures for human CES reference sequences and transcripts described on the AceView website (http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/) (Thierry-Mieg and Thierry-Mieg 2006). The $C E S$ gene and transcript sequences varied in size from 11 kb for $C E S 2$ to 79 kb for CES5A and exhibited distinct structures in each case. Moreover, several isoforms were generated in vivo for each of the human CES genes and have different structures as a result of transcriptional events, including truncation of the 5^{\prime} ends, differential presence or absence of exons, alternative splicing or retention of introns, or overlapping exons with different boundaries. In addition, the isoforms are differentially expressed in tissues of the body and may perform distinctive metabolic roles. CES isoforms were named by using the gene name followed by the GenBank ID for the specific transcript. Recent studies of human CESI have described at least two major isoform transcripts, designated as CES1A1 (AB119997) and CESIA2 (AB119996) (Tanimoto et al. 2007). These isoforms have been redesignated as CES1_AB119997 and CES1_AB119997, respectively (see Table 1) and encode sequences that differ by only four amino acid residues within the N -terminal region (exon 1) (Tanimoto et al. 2007). Distinct 5 '-untranslated consensus sequences for binding transcription factors were reported. They suggested differences in transcriptional regulation and functional roles in contributing to CPT-11 chemosensitivity for these isoforms (Hosokawa et al. 2008; Tanimoto et al. 2007; Yoshimura et al. 2008). Fukami et al. (2008) have also examined human $C E S$ isoform structure and proposed that $C E S 1 P 1$,a $C E S 1$-like pseudogene on chromosome 16 (designated as CES1A3), was derived from the CES1_AB119997 isoform.

human CES amino acid sequences and structures

An alignment of the amino acid sequences for human CES-like protein subunits is shown in Fig. 1, together with a description of several features for these enzymes. The sequences have been derived from previously reported sequences for CES1 (Munger et al. 1991; Shibata et
al. 1993), CES2 (Langmann et al. 1997; Schewer et al. 1997), CES3 (Sanghani et al. 2004), CES4A (previously CES6 or CES8) (Holmes et al. 2009a); and CES5A (previously CES7)
(Holmes et al. 2008a) (Table 1). Alignments of the human CES subunits showed between 39 and 46% sequence identities, which suggests that these are products of separate but related gene families, whereas sequence alignments of human CES1 and CES2 with mouse CES1like and CES2-like subunits exhibited higher levels of sequence identities with the CES family homolog in each case [66-78\% identities for human and mouse CES1-like subunits and $64-72 \%$ for human and mouse CES2-like subunits, respectively (data not shown)], suggesting that these are members of the same mammalian CES families, in each case. Similar results were observed for comparisons of human CES3, CES4A (previously CES6 or CES8), and CES5A (previously CES7) with the corresponding mouse CES homolog sequences, with 65,72 , and 69% identities being observed, respectively. This supports the designation of these $C E S$ genes as members of the same family, in each case.

The amino acid sequences for the human CES subunits examined contained 567 (CES1), 559 (CES2), 571 (CES3), 561 (CES4A), and 575 (CES5A) residues (Fig. 1). Previous studies on human CES1 have identified key residues that contribute to the catalytic, oligomeric, subcellular localization and regulatory functions for this enzyme (sequence numbers refer to human CES1). These included the catalytic triad for the active site (Ser221; Glu354; His468) (Cygler et al. 1993); disulfide bond-forming residues (Cys87/Cys116 and Cys274/Cys285) (Lockridge et al. 1987); microsomal targeting sequences, including the hydrophobic N-terminus signal peptide (Potter et al. 1998; von Heijne 1983; Zhen et al. 1995) and the C-terminal endoplasmic reticulum (ER) retention sequence (His-Ile-Glu-Leu) (Robbi and Beaufay 1983); and ligand-binding sites, including the "Z-site" (Gly356), the "side door" (Val424-Met425-Phe426), and the "gate" (Phe550) residues (Bencharit et al. 2003, 2006; Fleming et al. 2005). Identical residues were observed for each of the human CES subunit families for the active site triad and disulfide bond-forming residues, although changes were observed for some key residues for CES1 subunits, including the "side-door" and "gate" of the active site, with family-specific sequences or residues in each case. The "Z-site" (Gly356 for human CES1) has been retained for human CES2 and CES5A sequences, but substituted for CES3 (Ser) and CES4A (Asn). The hydrophobic N-terminal sequence for human CES sequences has undergone major changes, although this region retains a predicted signal peptide property. The human CES C-terminal tetrapeptide sequences have also changed, although CES2 (HTEL) and CES3 (QEDL) are similar in sequence with human CES1 (HIEL), which plays a role in the localization of human CES1 within endoplasmic reticulum membranes (Robbi and Beaufay 1983).

Other key human CES1 sequences included two charge clamps that are responsible for subunit-subunit interaction, namely, residues Lys78/Glu183 and Glu72/Arg186, which contribute to the trimeric and hexameric structures for this enzyme (Bencharit et al. 2003, 2006; Fleming et al. 2005). Other human CES subunit sequences for these charge clamp sites included substitutions with neutral amino acids for the human CES2 and CES5A sequences, while the CES3 and CES4A sequences retained one potential clamp site (Fig. 1). Pindel et al. (1997) and Holmes et al. (2009b) have reported monomeric subunit structures for human and baboon CES2, which is consistent with the absence of charge clamps for this enzyme. This could have a major influence on the kinetics and biochemical roles for human CES isozymes since three-dimensional studies have indicated that ligand binding to the human CES1 "Z-site" shifts the trimer-hexamer equilibrium toward the trimer that facilitates substrate binding and enzyme catalysis (Redinbo and Potter 2005). The N -glycosylation site for human CES1 at Asn79-Ala80-Thr81 (Bencharit et al. 2003, 2006; Fleming et al. 2005; Kroetz et al. 1993) was not retained for any of the other human CES sequences, although potential N-glycosylation sites were observed at other positions, including CES2 (site 3), CES3 (site 2), CES4A (sites 4, 5, and 7), and CES5A (sites 6, 8, and 9) (Table 4). Given the
reported role of the N -glycosylated carbohydrate group contributing to CES1 stability and maintaining catalytic efficiency (Kroetz et al. 1993), the N-glycosylation sites predicted for other human CES subunits may perform similar functions or indeed may serve new functions specific to a particular CES family.

Predicted secondary structures for human CES2 (Holmes et al. 2009b), CES3 (Holmes et al. 2010), CES4A (Holmes et al. 2009a), and CES5A (Holmes et al. 2008a) sequences were compared with those reported for human CES1, and similar α-helix β-sheet structures were observed for all of the CES subunits examined (Bencharit et al. 2003, 2006) (Fig. 1). This was especially apparent near key residues or functional domains such as the α-helix within the N -terminal signal peptide, the β-sheet and α-helix structures near the active site Ser221 (human CES1) and "Z-site" (Glu354/Gly356, respectively), the α-helices bordering the "side door" site, and the a-helix containing the "gate" residue (Phe550 for human CES1). The human CES5A sequence, however, contained a predicted helix at the hydrophobic Cterminus not observed for other CES subunits which may perform a family-specific function. Predicted 3D structures have been previously described for each of the human CES subunits (Holmes et al. 2008a, 2009a, b, 2010); they were similar to the human CES1 structure (Bencharit et al. 2003, 2006).

Mouse Ces genes and enzymes

Table 2 summarizes the proposed names, locations, and overall structures for the Ces genes observed for the mouse genome (July 2007 mouse [Mus musculus] genome data obtained from the Build 37 assembly by NCBI and the Mouse Genome Sequencing Consortium) (http://www.ncbi.nlm.nih.gov was used in this study). The italicized gene name Ces is consistent with other mouse gene nomenclature and is preferred to the CES stem used for human genes. At least 20 mouse Ces genes are recognized on the Mouse Genome Database http://www.informatics.jax.org/) (MGI) and further described in terms of their locations on mouse chromosome 8 , the number of predicted exons for each gene, predicted strand for transcription, number of amino acid residues and subunit molecular weights (MWs) for the encoded CES subunits, and identification symbols from MGI (e.g., MGI3648919 for Cesla), NCBI (Reference Sequences were identified from the National Center for Biotechnology Information database) (http://www.ncbi.nlm.nih.gov/), Vega (the VErtebrate Genome Annotation database) (http://vega.sanger.ac.uk/index.html), UNIPROT (Universal Protein Resource) (http://www.ebi.ac.uk/uniprot/), and Ensembl (Genome Database) (http://www.ensembl.org/) database sources.

Eight Cesl-like genes are located in tandem within a $360-\mathrm{kb}$ segment of mouse chromosome 8 , with an average gene size of 28 kb . The names for these genes (Cesla, Ceslb,..., Ceslh) are allocated in the same order as their locations on the mouse genome (Table 3). The Cesllike gene cluster is also located near the mouse Ces5a gene, which is comparable to the CES1P1-CES1-CES5A cluster observed for human chromosome 16. Each of these genes contained 13 or 14 exons predicted for transcription on the negative strand and with encoded CES subunits exhibiting distinct but similar amino acid sequences ($554-567$ residues). The subunits were $63-85 \%$ identical with each other and with the human CES1 sequence, which is consistent with these being members of the mouse Cesl gene family. Mouse Cesl-like genes included several that have been previously investigated, including Ceslc (previously called Es1), encoding a major mouse plasma esterase with 554 amino acid residues and also exhibiting lung surfactant convertase activity (Genetta et al. 1988; Krishnasamy et al. 1998); Cesld (previously Ces3), encoding a mouse liver enzyme with 565 residues and exhibiting triacylglycerol hydrolase activity (Dolinsky et al. 2001); Cesle (previously called Es22 or egasyn), encoding a liver CES with 562 residues and exhibiting β-glucuronidase-binding properties (Ovnic et al. 1991); and Ceslg (previously Cesl), encoding a liver CES with 565
amino acid residues and exhibiting lipid metabolizing activity (Table 4) (Ellingham et al. 1998).

Eight Ces2-like genes were also observed in a second 286 -kb gene cluster on mouse chromosome 8 , with an average gene size of approximately 8 kb (Table 2). These genes were named according to their sequence of position on the mouse genome (Ces $2 a$, Ces $2 b$, $\ldots, C e s 2 h)$ and included a pseudogene designated Ces2d-ps. Three of these mouse Ces2-like genes have been previously described, including Ces $2 c$ (previously Ces2), encoding an inducible liver acyl-carnitine hydrolase enzyme with 561 residues (Furihata et al. 2003); Ces2e (previously Ces5), encoding a liver and intestinal enzyme with 560 amino acid residues (The MGC Project Team 2004); and Ces2a (previously Ces6), encoding a liver and colon enzyme with 558 residues (The MGC Project Team 2004). The Ces2-like cluster was located alongside two Ces3-like mouse genes (Ces $3 a$ and Ces3b) and a Ces4a gene (Table 3); this is comparable to the CES2-CES3-CES4A gene cluster on human chromosome 16 (Table 1). The Ces3a gene (previously mouse esterase 31 or Est31) is expressed strongly in male mouse livers and encodes a 554-residue CES3-like subunit (Aida et al. 1993), whereas the Ces $3 b$ gene (previously Es31L or EG13909) is also expressed in liver and encodes a 568 -residue subunit (The MGC Project Team 2004). The Ces4a gene (previously called EST8 or Ces8) encodes an enzyme predicted for secretion in epidermal cells with 563 amino acid residues and showing 72% identity with human CES4A (The MGC Project Team 2004).

Rat Ces genes and enzymes

Table 3 summarizes the proposed names, locations, and structures for Ces genes observed for the rat genome [the November 2004 rat (Rattus norvegicus) genome assembly based on version 3.4 produced by the Baylor Human Genome Sequencing Center (Gibbs et al. 2004) was used in this study]. Fifteen rat Ces genes were identified on the Rat Genome Database (RGD) (http://rgd.mcw.edu/) and further characterized by their locations on rat chromosomes 1 and 19 , the number of predicted exons for each gene, the predicted strand for transcription, current gene symbols, the number of amino acid residues and subunit MWs for the encoded CES subunits, and the identification symbols from RGD (e.g., RGD1583671 for Cesla), NCBI Reference Sequences (http://www.ncbi.nlm.nih.gov/), Vega (http://vega.sanger.ac.uk/index.html), UNIPROT (http://www.ebi.ac.uk/uniprot/), and Ensembl (http://www.ensembl.org/) database sources.

Five Cesl-like genes were located in tandem within a 201-kb segment of rat chromosome 19 , with an average gene size of 33 kb (Table 3). The names for these genes (Cesla, Ceslc, $\ldots, \operatorname{Ces} 1 f)$ were allocated according to their degree of identity with the corresponding mouse Cesl-like genes (Table 3). The genes were located in tandem in the same order as the mouse Cesl-like genes and were near the rat Ces5a gene. This is comparable to the CES1P1-CES1A-CES5A gene cluster observed for human chromosome 16. The rat Cesl-like genes contained 14 exons and were predicted for transcription on the positive strand, with encoded CES subunits exhibiting similar amino acid sequences (550-565 residues). The subunits were $65-73 \%$ identical with each other and with the human CES1 sequence, which is consistent with membership of the rat Cesl gene family. The encoded rat Cesl-like subunit sequences showed higher levels of identity with the corresponding mouse Cesl-like sequences ($81-92 \%$ for rat and mouse CES1a, CES1c, CES1d, CES1e, and CES1f amino acid sequences). At least three rat Cesl-like genes have been previously described, including Ceslc (previously called Esl), encoding a rat plasma esterase (Sanghani et al. 2002; Vanlith et al. 1993); Cesld (previously Ces3), encoding a rat liver enzyme with 565 residues and exhibiting cholesteryl ester hydrolase activity (Ghosh et al. 1995; Robbi et al. 1990); and

Cesle (previously called ES-3 or egasyn), encoding a rat liver Ces with 561 residues and having β-glucuronidase-binding properties (Robbi and Beaufay 1994).

Seven rat Ces2-like genes were observed on the rat genome and were localized on two chromosomes: chromosome 1 (Ces $2 c$ and Ces $2 i$) and chromosome 19 in three locations: Ces $2 a$ and Ces $2 e$; Ces $2 j$; and Ces $2 g$ and Ces2h (Table 3). The genes were named according to the degree of sequence identity with the corresponding mouse Ces2-like genes. Rat Ces2like genes have been previously investigated, including Ces $2 c$ (previously Ces2), encoding an inducible liver acyl-carnitine hydrolase enzyme with 561 residues (Furihata et al. 2003); Ces2e (previously Ces5), encoding a liver and intestinal enzyme with 560 amino acid residues (The MGC Project Team 2004); and Ces2a (previously Ces6), encoding a liver and colon enzyme with 558 residues.(The MGC Project Team 2004). The rat Ces2-like cluster was located alongside a Ces3-like gene (Ces $3 a$ and Ces3b) and a Ces $4 a$ gene (Table 3), which is comparable to the CES2A-CES3A-CES4A gene cluster on human chromosome 16 (Table 1).

Functions of mammalian CES families

Mammalian CES families exhibit broad substrate specificities, and specific roles for these enzymes have been difficult to establish because of the promiscuity of the CES active site toward a wide range of substrates and the existence of multiple forms with overlapping specificities (Fleming et al. 2005; Imai 2006; Leinweber 1987; Redinbo and Potter 2005; Satoh and Hosokawa 1998, 2006). Table 4 summarizes current knowledge concerning substrates and functions reported for human, mouse, and rat $C E S$ gene family members.

Studies on human CES1 have examined its role in the metabolism of various drugs, including narcotics such as heroin and cocaine (Bencharit et al. 2003; Pindel et al. 1997), warfare nerve agents (Hemmert et al. 2010), psy-chostimulants (Sun et al. 2004), analgesics (Takai et al. 1997), and chemotherapy drugs (Sanghani et al. 2004). Mammalian liver is predominantly responsible for drug clearance from the body, with CES1 and CES2 (with CES1 > CES2) playing major roles, following absorption of drugs into the circulation (Imai 2006; Pindel et al. 1997). Mammalian intestine (with CES2 > CES1) plays a major role in first-pass clearance of several drugs, predominantly via CES2 in the ileum and jejunum (Imai et al. 2003). CES1 and CES2 also have different roles in prodrug activation, as shown for the anticancer drug irinotecan (CPT-11), which is converted to its active form SN-38 predominantly by CES2 (Humerickhouse et al. 2000). Recent modeling studies have shown that the human CES2 active site cavity is lined with negatively charged residues; this may explain the preference of this enzyme for neutral substrates (Vistoli et al. 2010). The role for human CES3 has not been studied extensively, although the enzyme is capable of activating prodrugs such as irinotecan (Sanghani et al. 2004). There are no reports concerning the metabolic role(s) for human CES4A, and functional studies on mammalian CES5 function are limited to feline species, where the enzyme is secreted into cat urine and apparently regulates the production of a cat-specific amino acid "felinine," a putative pheromone precursor (Miyazaki et al. 2006).

Evolution of mammalian CES gene families

Recent comparative and evolutionary studies (Holmes et al. 2008b; Williams et al. 2010) have concluded that there are at least five major mammalian $C E S$ gene families. In addition, the gene duplication events that generated the ancestral mammalian CES1, CES2, CES3, CES4, and CES5 genes have apparently predated the common ancestor for marsupial and eutherian mammals (Holmes et al. 2008b) which has been estimated at approximately 173193 million years ago (Woodburne et al. 2003) and may coincide with the early diversification of tetrapods approximately 350-360 million years ago (Donoghue and

Benton 2007). The mammalian CES gene families are ancient in their genetic origins and were established prior to the appearance of mammals during evolution. Further CES/Ces gene duplication events have subsequently occurred during mammalian evolution, however, especially for rodent species, for which the mouse and rat Cesl-like and Ces2-like genes have apparently undergone successive duplication events. At least three of these are likely to have occurred in the common ancestor for rat and mouse during rodent evolution since several homolog genes and proteins were recognized, including Ceslc (previously Es1), Cesld (Ces3), Cesle (Es22), Ces2a (Ces6), Ces2c (Ces2), and Ces2e (Ces5) (Tables 3, 4). With the exception of the rat Ces2-like genes, which were located in multiple clusters on chromosomes 1 and 19, human, mouse, and rat $C E S$ genes were localized within two clusters of genes on the same chromosome, namely, Cesl-Ces5A (with multiple Ces1-like genes) and Ces2-Ces3-Ces4A (with multiple Ces2-like genes in mouse and rat). The presence of two Ces3-like genes in the mouse suggests that a further duplication event also took place in this species.

Conclusions

This article has examined human, mouse, and rat carboxylesterase genes and encoded subunits and has proposed a new nomenclature system, identifying each of five gene families (designated as CES1, CES2,..., Ces5 for human genes and Ces1, Ces2,..., Ces5 for mouse and rat genes) and allocating a unique gene name for each of the genes. The italicized root symbol "CES" for human and "Ces" for mouse and rat genes followed by a number for the family were used, which is consistent with current practice. When multiple genes were identified for a gene family or where a gene required a name that clashed with an existing name, a capital letter (for human genes) (e.g., CES4A) or a lower-case letter (for mouse and rat genes) (e.g., Cesla, Ceslb) was added after the number. A human $C E S$ pseudogene was named, using a capital "P" and a number (e.g., CESIP1), whereas mouse and rat Ces pseudogenes were named with a unique lower-case letter followed by "-ps" (e.g., Ces $2 d$-ps). This new nomenclature will also assist in naming multiple CES genes and proteins from other mammalian species. As an example, Holmes et al. (2009c) and Williams et al. (2010) have reported multiple CESI-like genes on the horse genome that may be designated in accordance with the recommended nomenclature as CES1A, CESIB, CES1C, and so on, in order of the tandem locations of these genes on chromosome 3. Transcript isoforms of CES gene transcripts were named by following the gene name with the GenBank ID for the specific transcript. This nomenclature will assist our understanding of the genetic relatedness and the CES family origins for individual human, mouse, and rat $C E S$ genes and proteins and facilitate future research into the structure, function, and evolution of these genes. It will also serve as a model for naming $C E S$ genes from other mammalian species.

Acknowledgments

This research was supported by NIH Grants P01 HL028972 and P51 RR013986 (to LAC); R01 ES07965 (to BY); and CA108775, and a Cancer Center Core Grant CA21765, the American Lebanese and Syrian Associated Charities (ALSAC) and St. Jude Children's Research Hospital (SJCRH) (to PMP); and a program project grant HG000330 entitled `Mouse Genome Informatics' from the National Human Genome Research Institute of the NIH (to LJM). Acknowledgement is also given to members of the Redinbo laboratory and NIH grants CA98468 and NS58089 (to MRR).

References

Aida K, Moore R, Negishi M. Cloning and nucleotide sequence of a novel, male-predominant carboxylesterase in mouse liver. Biochim Biophys Acta. 1993; 1174:72-74. [PubMed: 7916639]

Barthel BL, Torres RC, Hyatt JL, Edwards CC, Hatfield MJ, et al. Identification of human intestinal carboxylesterase as the primary enzyme for activation of a doxazoline carbamate prodrug. J Med Chem. 2008; 51:298-304. [PubMed: 18173233]
Becker A, Bottcher A, Lackner KJ, Fehringer P, Notka F, et al. Purification, cloning and expression of a human enzyme with acyl coenzyme A: cholesterol acyltransferase activity, which is identical to liver carboxylesterase. Arterioscler Thromb. 1994; 14:1346-1355. [PubMed: 8049197]
Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol. 2003; 10:349-356. [PubMed: 12679808]
Bencharit S, Edwards CC, Morton CL, Howard-Williams EL, Kuhn P, et al. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J Mol Biol. 2006; 363:201214. [PubMed: 16962139]

Berning W, De Looze SM, von Deimling O. Identification and development of a genetically closely linked carboxylesterase gene family of the mouse liver. Comp Biochem Physiol. 1985; 80:859-865.
Cygler M, Schrag JD, Sussman JL, Harel M, Silman I, et al. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases and related proteins. Protein Sci. 1993; 2:366-382. [PubMed: 8453375]
Diczfalusy MA, Bjorkkem I, Einarsson C, Hillebrant CG, Alexson SE. Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids. J Lipid Res. 2001; 42:1025-1032. [PubMed: 11441128]
Dolinsky VW, Sipione S, Lehner R, Vance DE. The cloning and expression of murine triacylglycerol hydrolase cDNA and the structure of the corresponding gene. Biochim Biophys Acta. 2001; 1532:162-172. [PubMed: 11470237]
Donoghue PCJ, Benton MJ. Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends Genet. 2007; 22:424-630.
Ecroyd H, Belghazi M, Dacheux JL, Miyazaki M, Yamashita T, et al. An epididymal form of cauxin, a carboxylesterase-like enzyme, is present and active in mammalian male reproductive fluids. Biol Reprod. 2006; 74:439-447. [PubMed: 16251497]
Ellingham P, Seedorf U, Assmann G. Cloning and sequencing of a novel murine liver carboxylesterase cDNA. Biochim Biophys Acta. 1998; 1397:175-179. [PubMed: 9565681]
Fleming CD, Bencharit S, Edwards CC, Hyatt JL, Tsurkan L, et al. Structural insights into drug processing by human carboxylesterase 1: tamoxifen, Mevastatin, and inhibition by Benzil. J Mol Biol. 2005; 352:165-177. [PubMed: 16081098]
Fukami T, Nakajima M, Maruichi T, Takahashi S, Takamiya M, et al. Structure and characterization of human carboxylesterase 1A1, 1A2 and 1A3 genes. Pharm Genomics. 2008; 18:911-920.
Furihata T, Hosokawa M, Nakata F, Satoh T, Chiba K. Purification, molecular cloning, and functional expression of inducible liver acylcarnitine hydrolase in C57BL/6 mouse, belonging to the carboxylesterase multigene family. Arch Biochem Biophys. 2003; 416:101-109. [PubMed: 12859986]
Genetta TL, D'Eustachio P, Kadner SS, Finlay TH. cDNA cloning of esterase 1, the major esterase activity in mouse plasma. Biochem Biophys Res Commun. 1988; 151:1364-1370. [PubMed: 2895647]
Ghosh S. Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing and expression of full-length cDNA. Physiol Genomics. 2000; 2:1-8. [PubMed: 11015575]
Ghosh S, Mallonee DH, Grogan WM. Molecular cloning and expression of rat hepatic neutral cholesteryl ester hydrolase. Biochim Biophys Acta. 1995; 1259:305-312. [PubMed: 8541339]
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004; 428:493-521. [PubMed: 15057822]
Gilham D, Alam M, Gao W, Vance DE, Lehner R. Triacylglycerol hydrolase is localized to the endoplasmic reticulum by an unusual retrieval sequence where it participates in VLDL assembly without utilizing VLDL lipids as substrates. Mol Biol Cell. 2005; 16:984-996. [PubMed: 15601899]

Hemmert AC, Otto TC, Wierdl M, Edwards CC, Fleming CD, et al. Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin. Mol Pharmacol. 2010; 77:508-516. [PubMed: 20051531]
Holmes RS, Cox LA, VandeBerg JL. Mammalian carboxylesterase 5: comparative biochemistry and genomics. Comp Biochem Physiol D Genomics Proteomics. 2008a; 3:195-204.
Holmes RS, Chan J, Cox LA, Murphy WJ, VandeBerg JL. Opossum carboxylesterases: sequences, phylogeny and evidence for CES duplication events predating the marsupial-eutherian common ancestor. BMC Evol Biol. 2008b; 8:54. [PubMed: 18289373]
Holmes RS, VandeBerg JL, Cox LA. A new class of mammalian carboxylesterase CES6. Comp Biochem Physiol Part D Genomics Proteomics. 2009a; 4:209-217. [PubMed: 20161041]
Holmes RS, Glenn JP, VandeBerg JL, Cox LA. Baboon carboxylesterases 1 and 2: sequences, structures and phylogenetic relationships with human and other primate carboxylesterases. J Med Primatol. 2009b; 38:27-38. [PubMed: 19187434]
Holmes RS, Cox LA, VandeBerg JL. Horse carboxylesterases: evidence for six CES1 and four families of CES genes on chromosome 3. Comp Biochem Physiol. 2009c; 4:54-65.
Holmes RS, Cox LA, VandeBerg JL. Mammalian carboxylesterase 3: comparative genomics and proteomics. Genetica. 2010; 138(7):695-708. [PubMed: 20422440]
Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules. 2008; 13:412-431. [PubMed: 18305428]
Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Kayano N, et al. Genomic structure and transcriptional regulation of the rat, mouse and human carboxylesterase genes. Drug Metab Rev. 2007; 39:1-15. [PubMed: 17364878]
Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Watanabe N, et al. Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metab Pharmacokinet. 2008; 23:73-84. [PubMed: 18305377]
Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms h-CE1 and hCE-2. Cancer Res. 2000; 60:1189-1192. [PubMed: 10728672]
Imai T. Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet. 2006; 21:173-185. [PubMed: 16858120]
Imai T, Yoshigae Y, Hosokawa M, Chiba K, Otagiri M. Evidence for the involvement of a pulmonary first-pass effect via carboxylesterase in the disposition of a propanolol ester derivative after intravenous administration. J Pharmacol Exp Ther. 2003; 307:1234-1242. [PubMed: 14534358]
Ko KW, Erickson B, Lehner R. Es-x/Ces1 prevents triacylglycerol accumulation in McArdle-RH7777 hepatocytes. Biochim Biophys Acta. 2009; 1791:1133-1143. [PubMed: 19651238]
Krishnasamy R, Teng AL, Dhand R, Schultz RM, Gross NJ. Molecular cloning, characterization and differential expression pattern of mouse lung surfactant convertase. Am J Physiol Lung Mol Cell Biol. 1998; 275:L969-L975.
Kroetz DL, McBride OW, Gonzalez FJ. Glycosylation-dependent activity of Baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry. 1993; 32:11606-11617. [PubMed: 8218228]
Langmann T, Becker A, Aslanidis C, Notka F, Ulrich H, et al. Structural organization and characterization of the promoter region of a human carboxylesterase gene. Biochim Biophys Acta. 1997; 1350:65-74. [PubMed: 9003459]
Lehner R, Vance DE. Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol. Biochem J. 1999; 343:1-10. [PubMed: 10493905]
Leinweber FJ. Possible physiological roles of carboxyl ester hydrolases. Drug Metab Rev. 1987; 18:379-439. [PubMed: 3286170]
Linke T, Dawson H, Harrison EH. Isolation and characterization of a microsomal retinyl ester hydrolase. J Biol Chem. 2005; 280:23287-23294. [PubMed: 15767260]
Lockridge O, Adkins S, La Due BN. Location of disulfide bonds within the sequence of human serum cholinesterase. J Biol Chem. 1987; 262:12945-12952. [PubMed: 3115973]
Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M, et al. Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics. 2004; 84:661-668. [PubMed: 15475243]

Masaki K, Hashimoto M, Imai T. Intestinal first-pass metabolism via carboxylesterase in rat jejunum and intestine. Drug Metab Dispos. 2007; 35:1089-1095. [PubMed: 17392394]
Miyazaki M, Kamiie K, Soeta S, Taira H, Yamashita T. Molecular cloning and characterization of a novel carboxylest-erase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus). Biochem J. 2003; 370:101-110. [PubMed: 12401131]
Miyazaki M, Yamashita T, Suzuki Y, Saito Y, Soeta S, et al. A major urinary protein of the domestic cat regulates the production of felinine, a putative pheromone precursor. Chem Biol. 2006; 13:1070-1079.
Morton CL, Iacono L, Hyatt JL, Taylor KR, Cheshire PJ, et al. Activation and antitumor activity of CPT-11 in plasma esterasedeficient mice. Cancer Chemother Pharmacol. 2005; 56:629-636. [PubMed: 15918039]
Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, et al. A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem. 1991; 266:18832-18838. [PubMed: 1918003]
Mutch E, Nave R, McCracken N, Zech K, Williams FM. The role of esterases in the metabolism of ciclesinide to deisobutyrlciclesonide in human tissue. Biochem Pharmacol. 2007; 73:1657-1664. [PubMed: 17331475]
Ohtsuka H, Inoue S, Kameyama M. Intracellular conversion of irinotecan to its active form, SN-38, by native carboxylesterase in human non-small cell lung cancer. Lung Cancer. 2003; 41:87-198.
Okazaki H, Igarashi M, Nishi M, Tajima M, Sekiya M, et al. Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol. A potential role in adipocyte lipolysis. Diabetes. 2006; 55:2091-2097. [PubMed: 16804080]
Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, et al. Identification of neutral cholesterol hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem. 2008; 283:3335733364. [PubMed: 18782767]

Ovnic M, Swank RT, Fletcher C, Zhen L, Novak EK, et al. Characterization and functional expression of a cDNA encoding egasyn (esterase-22): the endoplasmic reticulum-targeting protein of betaglucuronidase. Genomics. 1991; 11:956-967. [PubMed: 1783403]
Pindel EV, Kedishvili NY, Abraham TL, Brezinski MR, Zhang A, et al. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J Biol Chem. 1997; 272:14769-14775. [PubMed: 9169443]
Potter PM, Wolverton JS, Morton CL, Wierdl M, Danks MK. Cellular localization domains of a rabbit and human carboxylesterase: influence on irinotecan (CPT-11) metabolism by the rabbit enzyme. Cancer Res. 1998; 58:3627-3632. [PubMed: 9721871]
Redinbo MR, Potter PM. Mammalian carboxylesterases: from drug targets to protein therapeutics. Drug Discov Today. 2005; 10:313-320. [PubMed: 15749280]
Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, et al. The UCSC Genome Browser database: update 2010. Nucl Acids Res. 2010; 38:D613-D619. [PubMed: 19906737]
Robbi M, Beaufay H. Purification and characterization of various esterases from rat liver. Eur J Biochem. 1983; 137:293-301. [PubMed: 6653557]
Robbi M, Beaufay H. Cloning and sequencing of rat liver carboxylesterase ES-3 (egasyn). Biochem Biophys Res Commun. 1994; 203:1404-1411. [PubMed: 7945287]
Robbi M, Beaufay H, Octave JN. Nucleotide sequence of cDNA coding for rat liver pI 6.1 esterase (ES-10), a carboxylesterase located in the lumen of the endoplasmic reticulum. Biochem J. 1990; 269:451-458. [PubMed: 2386485]
Ruppert C, Bagheri A, Markart P, Schmidt R, Seegar W, et al. Liver carboxylesterase cleaves surfactant protein (SP-B) and promotes surfactant subtype conversion. Biochem Biophys Res Commun. 2006; 348:1449-1454. [PubMed: 16919595]
Sanghani SP, Davis WI, Dumaual NG, Mahrenholz A, Bosron WF. Identification of microsomal rat liver carboxylesterases and their activity with retinyl palmitate. Eur J Biochem. 2002; 269:43874398. [PubMed: 12230550]

Sanghani SP, Quinney SK, Fredenberg TB, Davis WI, Murray DJ, et al. Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N(5-aminopentanoic acid)-1-piperidino] carbonyloxycampothecin and 7-ethyl-10-[4-(1-piperidino)-1 amino]-carbonyloxycamptothecin, by
human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab Dispos. 2004; 32:505-511. [PubMed: 15100172]
Satoh T, Hosokawa M. Molecular aspects of carboxylesterase isoforms in comparison with other esterases. Toxicol Letters. 1995; 82-83:439-445.
Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Ann Rev Pharmacol Toxicol. 1998; 38:257-288. [PubMed: 9597156]
Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases. Chem Biol Interact. 2006; 162:195-211. [PubMed: 16919614]
Satoh T, Taylor P, Bosron WF, Sanghani P, Hosokawa M, et al. Current progress on esterases: from molecular structure to function. Drug Metab Dispos. 2002; 30:488-493. [PubMed: 11950776]
Schewer H, Langmann T, Daig R, Becker A, Aslandis C, et al. Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun. 1997; 233:117-120. [PubMed: 9144407]
Schreiber R, Taschler U, Wolinski H, Seper A, Tamegger SN, et al. Esterase 22 and betaglucuronidase hydrolyze retinoids in mouse liver. J Lipid Res. 2009; 50:2514-2523. [PubMed: 19723663]
Shibita F, Takagi Y, Kitajima M, Kuroda T, Omura T. Molecular cloning and characterization of a human carboxylesterase gene. Genomics. 1993; 17:76-82. [PubMed: 8406473]
Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvilli NY, et al. Methylphenadate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmcol Exp Ther. 2004; 310:469-476.
Takai S, Matsuda A, Usami Y, Adachi T, Sugiyama T, et al. Hydrolytic profile for ester- or amidelinkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol Pharm Bull. 1997; 20:869-873. [PubMed: 9300133]
Taketani M, Shii M, Ohura K, Ninomiya S, Imai T. Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci. 2007; 81:924-932. [PubMed: 17764701]
Tanimoto K, Kaneyasu M, Shimokuni T, Hiyama K, Nishiyama M. Human carboxylesterase 1A2 expressed from carboxylesterase 1A1 and 1A2 genes is a potent predictor of CPT-11 cytotoxicity in vitro. Pharm Genomics. 2007; 17:1-10.
The MGC Project Team. The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004; 14:2121-2127. [PubMed: 15489334]
Thierry-Mieg D, Thierry-Mieg J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 2006; 7(Suppl 1):S12-S14. [PubMed: 16925834]
Tsujita T, Okuda H. Palmitoyl-coenzyme A hydrolyzing activity in rat kidney and its relationship with carboxylesterase. J Lipid Res. 1993; 34:1773-1781. [PubMed: 7902406]
Vanlith HA, Haller M, Vanhoof IJM, Vanderwouw MJA, Vanzutphen BFM, et al. Characterization of rat plasma esterase ES-1A concerning its molecular and catalytic properties. Arch Biochem Biophys. 1993; 301:265-274. [PubMed: 8460939]
Vistoli G, Pedretti A, Mazzolari A, Testa B. Homology modelling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0. J Comput Aided Mol Des. 2010; 24(9):771-787. [PubMed: 20623318]
von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983; 133:17-21. [PubMed: 6852022]
Wang H, Gilham D, Lehner R. Proteomic and lipid characterization of apo-lipoprotein B-free luminal lipid droplets from mouse liver microsomes: implications for very low density lipoprotein assembly. J Biol Chem. 2007; 282:33218-33226. [PubMed: 17848546]
Williams ET, Wang H, Wrighton SA, Qian YW, Perkins EJ. Genomic analysis of the carboxylesterases: identification and classification of novel forms. Mol Phylogenet Evol. 2010; 57(1):23-34. [PubMed: 20510380]
Woodburne MO, Rich TH, Springer MS. The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol. 2003; 28:360-385. [PubMed: 12878472]
Xu G, Zhang W, Ma MK, MacLeod HL. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with the activation of irinotecan. Clin Cancer Res. 2002; 8:2605-2611. [PubMed: 12171891]

Yan B, Matoney L, Yang D. Human carboxylesterases in term placenta: enzymatic characterization, molecular cloning and evidence for the existence of multiple forms. Placenta. 1999; 20:517-525.
Yoshimura M, Kimura T, Ishii M, Ishii K, Matsuura T, et al. Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein $1(\mathrm{Sp} 1)$ binding sites. Biochem Biophys Res Commun. 2008; 369:939-942. [PubMed: 18328811]
Zhang L, Hu Z, Zhu C, Liu Q, Zhou Y, et al. Identification and characterization of an epididymisspecific gene, Ces7. Acta Biochim Biophys Sin. 2009; 41:809-815. [PubMed: 19779645]
Zhen L, Rusiniak ME, Swank RT. The beta-glucuronidase propeptide contains a serpin-related octamer necessary for complex formation with egasyn esterase and for retention within the endoplasmic reticulum. J Biol Chem. 1995; 270:11912-11920. [PubMed: 7744842]

Fig. 1.
Amino acid sequence alignments for human CES1, CES2, CES3, CES4A, and CES5A subunits. See Table 1 for CES isoform sequences aligned. Asterisk identical residues for CES subunits; colon similar alternate residues; dot dissimilar alternate residues. Signal peptide sequences for CES1 (1-17), CES2 (1-25), CES3 (1-27), CES4A (1-19), and CES5A (1-24) and C- termini (MTS) microsomal targeting sequences for CES1 (564-567), CES2 (556-569), and CES3 (568-571) are shown in red. Active site (AS) triad residues (human CES1) Ser221, Glu354, and His468 are highlighted in green. "Side door" (Val424-Met425-Phe426), "Gate" (Phe550), and cholesterol binding residue ("Z site") (Gly356) for human CES1 (Fleming et al. 2005) are highlighted in khaki. Disulfide bond Cys residues for human CES1 (filled circle) are shown in blue. Charge clamp residues identified for human CES1 (Glu72...Arg186; Lys78...Glu183) (Fleming et al. 2005) are highlighted in purple. Confirmed (CES1) (Asn79-Ala80-Thr81) [site 1] or predicted N-glycosylation sites for human CES2 (Asn111-Met112-Thr113) [site 3]; CES3 (Asn105-Ser106-Ser107) [site 2]; CES4A (Asn213-Val214-Thr215) [site 4], Asn276-Ser-277-Thr278) [site 5], and Asn388-Ile389-Thr390) [site 7]; and CES5A (Asn363-Lys364-Ser365) [site 6], (Asn513-Leu514Thr515) [site 8], and (Asn524-Met525-Ser526 [site 9] are highlighted in blue. α-Helix (human CES1 or predicted) and β-sheet (human CES1 or predicted) regions are highlighted in yellow and gray, respectively. α-Helices and β-sheets are numbered according to the reported human CES1 3D structure (Fleming et al. 2005). Bold underlined font shows known or predicted exon start sites; exon numbers refer to the human CES1 gene (see Langmann et al. 1997). (Color figure online)

Fig. 2.
Gene structures and major isoforms for human CES1, CES2, CES3, CES4A, and CES5A genes. Derived from AceView website http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/ (Thierry-Mieg and Thierry-Mieg 2006). Mature isoform variants (a) are shown with capped 5^{\prime} and 3^{\prime} ends for the predicted mRNA sequences. Exons are in solid color. 5^{\prime} and 3^{\prime} untranslated regions of the genes are shown as open boxes. Introns are shown as a line. The $5^{\prime} \rightarrow 3^{\prime}$ transcription directions are shown. a refers to the major transcript isoform for each human $C E S$ gene. Note that each $C E S$ gene structure is drawn to a different scale and that the respective gene sizes are shown: CES1, 34.8 kb ; CES2, 10.9 kb ; CES3, 13.9 kb ; CES4A, 22.3 kb ; and CES5A, 79.3 kb . (Color figure online)
Human CES1, CES1P1, CES2, CES3, CES4A, and CES5A genes and subunits

Human CES gene	Chromosome 16 coordinates	Gene size (bp)	Exons strand	Subunit MW	Ami	no acids	Gen	nBank ID O	Other gene names	Expression tissues (relative level of gene expression)	NCBI RefSeq transcript		UNIPROT ID
CESI	54,394,465-54,424,468	30,004	14 -ve	62,521	567		L077	7765 hC	hCE-I, CESIAI, HU1, ESTI	liver, lung, others [$\times 3.8$]	NM_001025195		P23141
CESIPI	55,794,511-55,808,824	14,314	6 +ve	ps	ps		AF1	106005 C	CES4	pseudogene	NR_003276		
CES2	65,527,040-65,535,426	8,387	$12+\mathrm{ve}$	61,807	559		BC0	032095 C	CE-2, HU2, hCE-2	brain, kidney, intestine [$\times 4.5$]	NM_003869		O00748
CES3	65,552,712-65,564,450	11,739	$13+\mathrm{ve}$	62,282	571		BC0	053670 ES	ES31, CE3	colon, brain, others [$\times 0.5$]	NM_024922		Q9H6X7
CES4A	65,580,177-65,600,543	20,367	14 +ve	60,366	561		BC1	166638 ES	ESTHL, CES8, CE5	brain, lung, kidney [$\times 0.7$]	NM_173815		Q5XG92
CES5A	54,437,867-54,466,634	28,768	$13-\mathrm{ve}$	63,936	575		BC0	039073 C	CES7, CE4	brain, lung, testis [$\times 0.1$]	NM_001143685		Q6NT32
Human CES gene	Human CES transcript isoform names	m Gene size (bp) Exons stran	d Subunit MW	- Amino acid		GenBank ID		Other names for human CES isoforms	AceView ${ }^{a}$ human CES isoform name	NCBI RefSeq transcript	Transcript length (bp)	
CESI	CESI_AB119997	30,380	14 -ve	62,592		568	AB119997		CESIAI	CES1, variant aApr07	NM_001025195	2,084	
	CESI_AB119996	30,380	14 -ve	62,521		567	AB119996		CESIA2	CES1, variant bApr07	NM_001025194	2,081	
	CESI_AK290623	30,310	14 -ve	62,393		566	AK290623		CESIA3	CES1, variant cApr07	NM_001266	2,007	
CES2 ${ }^{\text {d }}$	CES2_BC032095	10,890	$12+\mathrm{ve}$	68,899		559	BC032095		CES2AI	CES2, variant aApr07	NM_003869	4,177	
	CES2_AL713761	10,660	$12+\mathrm{ve}$	67,051		607	AL713761		CES2A2	CES2, variant bApr07	NM_198061	3,901	
	CES2_AK095522	10,590	$12+\mathrm{ve}$	61,566		560	AK095522		CES2A3	CES2, variant cApr07	NM_003869	4,140	
CES3	CES3_AY358609	13,920	$13+\mathrm{ve}$	$62,282$		571	AY358609		CES3AI	COesterase.1, variant a Apr07	NM_024922	3,894	
	CES3_BC053670	12,160	$13+\mathrm{ve}$	61,967		568	BC053670		CES3A2	COesterase. 1, variant bApr07	$B C 053670^{b}$	$2,123$	
CES4A	CES4A_BC166638	20,367	14 +ve	60,366		561	BC166638		CES4AI	c	NM_173815	2,135	
CES5A	CES5A_BC069501	29,217	13 -ve	63,926		575	BC069501		CES5AI	CES7, variant aApr07	NM_001143685.1	2,285	
	CES5A_BC069548	29,217	12 -ve	$58,201$		525	BC069548 CES5A2			CES7, variant bApr07	NM_145024	2,135	

ps pseudogene (CESIPI), +ve and -ve transcription strand direction $a_{\text {http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/ }}$
${ }^{b}$ GenBank ID number
${ }^{c}$ No current AceView isoform name available
$d_{\text {The human CES2_BC032095 isoform transcript contains multiple transcription start sites with the shorter CES2 sequence (} 559 \text { residues) previously reported (Pindel et al. 1997; Schewer et al. 1997) }}$

Table 2														
Mouse Ces genes and subumts														
Mouse CES gene (proposed)	Chr 8 coordinates	$\begin{gathered} \text { Gene } \\ \text { size } \\ (\text { bp }) \end{gathered}$	Exons Strand ${ }^{a}$	Subunit MW	Amino acids	GenBank ID	MGI ID_YZ	$\begin{aligned} & \text { Current MGI } \\ & \text { symbol_YZ } \end{aligned}$	Current gene symbols	NCBI transcript	Vega ID	Ensembl ID	UNIPROT ID	Tissue expression (relative) ${ }^{b}$
Cesla	95,544,116-95,572,091	27,979	$14-\mathrm{ve}$	61,744	563	BC089371	MGI:3648919	Gm4976	EG244595	NM_001013764	None	ENSMUSG 00000071047	Q5FWH4	Fetal liver [0.08]
Ceslb	95,580,789-95,603,815	23,027	$13-\mathrm{ve}$	62,197	567	*NM_001081372	MGI:3779470	Gm5158	CesN	NM_001081372	None	ENSMUSG 00000078964		Liver [$\times 2.0$]
Ceslc	95,622,914-95,655,182	32,268	$13-\mathrm{ve}$	61,172	554	BC028907	MGI:95420	Es1	Esl, Ces-N	NM_007954	ENSMUSG 00000024453	ENSMUSG 00000057400	P23953	Liver [$\times 2.0$]
Cesld	95,690,157-95,721,618	31,462	$14-\mathrm{ve}$	61,788	565	BC019198	MGI:2148202	Ces3	Ces 3	NM_053200	ENSMUSG 00000024539	ENSMUSG 00000056973	Q8VCT4	Tongue, liver [-2.2]
Cesle	95,725,306-95,753,320	28,015	$14-\mathrm{ve}$	61,582	562	BC019208	MGI:95432	Es22	Es22	NM_133660	ENSMUSG 00000024532	ENSMUSG 00000061959	Q64176	Liver, kidney [0.4]
Ceslf	95,780,331-95,803,599	23,269	$14-\mathrm{ve}$	61,698	561	BC013479	MGI:234564	AU018778	CesMLI, TGH-2	NM_144930	ENSMUSG 00000024519	ENSMUSG 00000031725	Q91WU0	Tongue, kidney [2.6]
Ceslg	95,826,807-95,861,053	34,247	$14-\mathrm{ve}$	62,680	565	BC021150	MGI:88378	Ces 1	Ces1	NM_021456	ENSMUSG 00000024535	ENSMUSG 00000057074	Q3UW56	Tongue, kidney [2.6]
Ceslh	95,875,926-95,903,624	27,699	$14-\mathrm{ve}$	62,087	562	AK009689	MGI:75704	2310039D24Rik	AK009689	XM_134476	ENSMUSG 00000033579	ENSMUSG 00000074156		Tongue, kidney [2.6]
Ces2a	107,257,972-107,265,313	7,342	$12+\mathrm{ve}$	61,940	558	BC024491	MGI:2142491	Ces6	Ces6	NM_133960	OTTMUSG 00000027410	ENSMUSG 00000055730	Q8QZR3	Liver, colon [$\times 1.0$]
Ces2b	107,355,572-107,362,353	6,782	$12+\mathrm{ve}$	61,927	556	BC015286	MGI:2448547	BC015286	BC015286	NM_198172	OTTMUSG 00000027467	ENSMUSG 00000050097	Q6PDB7	Kidney, colon [0.1]
Ces2c	107,371,033-107,378,161	7,129	$12+\mathrm{ve}$	62,470	561	BC031170	MGI:2389505	Ces2	Ces2	NM_145603	OTTMUSG 00000027466	ENSMUSG 00000061825	Q91WG0	Kidney, colon [1.2]
Ces2d-ps	107,391,388-107,397,764	3,762	$6+\mathrm{ve}$			BC034182	MGI:3704319	Gm9756		XR_002069	None	ENSMUSG 00000031884		Pseudogene
Ces2e	107,450,221-107,457,611	7,391	$12+\mathrm{ve}$	62,735	560	BC055062	MGI:2443170	Ces5	Ces5	NM_172759	None	ENSMUSG 00000031886	Q8BK48	Liver, intestine [0.6]
Ces2f	107,471,256-107,479,862	7,335	$12+\mathrm{ve}$	62,707	561	BC117742	MGI:1919153	2310038E17Rik		NM_001079865	None	ENSMUSG 00000062826	Q08ED5	Tongue, thymus [0.2]
Ces 2 g	107,485,688-107,492,328	6,771	$10+\mathrm{ve}$	52,731	478	BC027185	MGI:1919611	2210023G06Rik		NM_197999	None	ENSMUSG 00000031877		Kidney, stomach [0.7]
Ces $2 h$	107,524,753-107,544,307	19,554					MGI:3648740	Gm5744		XM_488149	None	None		Not available
Ces3a	107,572,572-107,582,000	21,512	$13+\mathrm{ve}$	61,510	554	AK138932	MGI:102773	Es31	Es31	NM_198672	None	ENSMUSG 00000069922	Q63880	Liver, aorta [1.1]
Ces3b	107,607,670-107,617,468	9,799	$14+\mathrm{ve}$	63,007	568	BC019047	Gm4738	Es31L	Es31L	NM_144511	None	ENSMUSG 00000062181		Liver [0.5]
Ces4a	107,655,852-107,673,417	17,566	$14+\mathrm{ve}$	62,123	563	BC026374	BC026374	Ces8	Ces8	NM_146213	OTTMUSG 00000027469	ENSMUSG 00000060560		Skin [0.1]
Ces5a	96,038,095-96,059,607	21,512	$13+\mathrm{ve}$	64,167	575	AB186393	MGI:1915185	Ces7	Ces 7	NM_001003951	None	ENSMUSG 00000058019	Q8R0W5	Prostate [0.03]

RefSeq, GenBank, UNIPROT, MGI, Vega, and Ensembl IDs provide the sources for the gene and protein sequences; gene sizes are given as base pairs of nucleotides
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/ ps pseudogene (Ces2d-ps)
${ }^{b}$ The relative gene expression level for mouse Ces genes in comparison with the expression of an average mouse gene is given in brackets
${ }^{a}+\mathrm{ve}$ and $-\mathrm{ve}=$ transcription strand
Mouse Ces genes and subumts

Rat CES gene (proposed)	Chromosomes 19 (and 1) coordinates	$\begin{array}{r} \text { Gene } \\ \text { size }(\mathbf{b p}) \end{array}$	Exons strand ${ }^{a}$	Subunit MW	Amino acids	GenBank ID	RGD ID	Ortholog	Current gene symbols	NCBI RefSeq ID	Ensembl transcript ID	UNIPROT ID	Tissue expression [relative]
Cesla	19:15,025,350-15,051,534	26,185	14 +ve	62,362	563		RGD:1583671	Mouse Gm4976	LOC679817	XM_001054575	ENSRNOT 00000060929	D4AA05	[0.01]
Ceslc	19:14,981,539-15,021,040	39,502	14 +ve	60,501	550	BC088251	RGD:2571	Mouse Es1	Es 1	NM_017004	ENSRNOT 00000024622	P10959	Liver [0.2]
Cesld	19:14,928,590-14,966,890	38,301	$14+\mathrm{ve}$	62,150	565	BC061789	RGD:70896	Mouse Ces3	Ces3	NM_133295	ENSRNOT 00000021812	P16303	Liver, lung [0.4]
Cesle	19:14,887,969-14,924,191	36,223	$14+\mathrm{ve}$	61,715	561	X81395	RGD:621508	Mouse Es22	Cesl, Es22	NM_031565	ENSRNOT 00000020775	Q924V9	Liver [0.1]
Ceslf	19:14,849,955-14,876,723	26,769	$14+\mathrm{ve}$	62,495	561	BC128711	RGD:1642419	None specified	LOC100125372	NM_001103359	ENSRNOT 00000024187	Q64573	Kidney, liver [0.1]
Ces2a	19:37,855-44,723	6,869	$13-\mathrm{ve}$	61,802	558	AY834877	RGD:708353	Mouse Ces6	Ces6	NM_144743	ENSRNOT 00000015451	Q8K3RO	Liver [0.05]
Ces2c	1:267,887,436-267,894,795	7,360	$12+\mathrm{ve}$	62,170	561	AB010632	RGD:621510	Mouse Ces2	Ces2l	NM_133586	ENSRNOT 00000045656	O70631, 070177	Brain, liver [0.1]
Ces2e	19:65,698-80,142	14,445	$12+\mathrm{ve}$	62,410	557	D50580	RGD:621563	Mouse Ces5	Ces5	NM_001100477	ENSRNOT 00000015724	035535	Liver [0.01]
Ces2g	19:34,883,500-34,890,289	6,790	$12+\mathrm{ve}$	62,909	560	CH473972	RGD:1308358	Mouse 2210023G05Rik	22I0023G05Rik		ENSRNOT 00000048385	D3ZXQ0	Kidney, liver [0.06]
Ces2h	19:34,910,987-34,925,261	14,275	12+ve	62,280	557	BC107806	RGD:1560889	Gm5744	Ces2	NM_001044258	ENSRNOT 00000019072	Q32Q55	Intestine [0.08]
Ces2i	1:267,807,848-267,815,235	7,388	$11+\mathrm{ve}$	62,072	559	XM212849	RGD:1565045	Mouse Ces2	RGD1565045	XM_001074128	ENSRNOT 00000015997	D3ZE31	Not available
Ces2j	19:215,376-222,512	7,137	$12+\mathrm{ve}$	61,795	556		RGD:1591368	Mouse Ces2	LOC685645	XM_001074128	ENSRNOT 00000061734	D3ZP14	[0.01]
Ces3a	19:34,929,247-34,937,264	8,018	$14+\mathrm{ve}$	62,393	563		RGD:1588734	Human CES3			ENSRNOT 00000040499		Not available
Ces4a	19:34,948,579-34,965,647	17,069	14 +ve	63,446	563		RGD:1307418	Mouse Ces8	Ces8	NM_001106176	ENSRNOT 00000019169	D4AE76	[0.01]
Ces5a	19:11,910,831-11,938,412	27,582	$11+\mathrm{ve}$	64,401	575	AF479659	RGD:1549717	Mouse Ces7	Ces7	NM_001012056	ENSRNOT 00000049452	Q5GRG2	[0.01]

 is given in brackets
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/

Table 4
Functions and substrates for human $C E S$ and mouse and rat Ces genes and enzymes

Mammal	CES (Ces) gene	Current gene symbol(s)	Substrates and function (hydrolysis or detoxification)
Human	CES1	CES1, hCE-1, CES1A1, HU1	Heroin, cocaine ${ }^{1-3}$, methyl phenidate ${ }^{4}$, temocapril ${ }^{5}$, CPT-11 ${ }^{6}$, flurbiprofen ${ }^{7}$
		CES 1	Fatty acid ethyl ester synthase ${ }^{8}$, sarin ${ }^{9}$, ciclesonide ${ }^{10}$, cholesteryl ester hydrolase ${ }^{11}$, triacylglycerol hydrolase ${ }^{11}$
	CES2	CES2, hCE-2, HU2	Procaine ${ }^{5}$, heroin, cocaine ${ }^{1-3}$, temacapril ${ }^{5}$, CPT-11,6 flurbiprofen ${ }^{7}$, doxazolidine ${ }^{12}$
	CES3	CES3	$\text { CPT-11 }{ }^{6}$
Mouse	Ceslc	Esl, Ces-N	$\text { Lung surfactant convertase }{ }^{13}, \text { CPT-11 }{ }^{14}$
	Ces1d	Ces3	Triacylglycerol hydrolase ${ }^{15}$
	Cesle	Es22, egasyn	β-glucuronidase binding in the liver endoplasmic reticulum ${ }^{16}$, retinyl ester hydrolase ${ }^{26}$
	Ceslf	CesML1, TGH-2	Triacylglycerol hydrolase ${ }^{27}$, monoacylglycerol hydrolase ${ }^{27}$, cholesteryl ester hydrolase ${ }^{27}$, phospholipase ${ }^{27}$
	Ceslg	Ces 1	$\text { Lipid metabolism }^{17}$
	Ces2c	Ces2	Inducible liver acylcarnitine hydrolase ${ }^{18}$
Rat	Ces1c	Es1	Retinyl palmitate ${ }^{19}$
	Ces1d	Ces3	Cholesterol ester hydrolase ${ }^{20}$, triacylglycerol hydrolase ${ }^{27}$, retinyl ester hydrolase ${ }^{28}$
	Cesle	ES-3	β-glucuronidase binding in the liver endoplasmic reticulum ${ }^{21}$
	Ces2a	Ces6	Intestinal first pass metabolism ${ }^{22}$
	Ces2c	Ces 2	Inducible liver acylcarnitine hydrolase ${ }^{18}$, intestinal first pass metabolism ${ }^{22}$
	Ces2e	Ces5	Intestinal first pass metabolism ${ }^{22}$
Cat	CES5A	CES7, cauxin	3-Methylbutanol-cysteinylglycine hydrolysis in urine releasing pheromone ${ }^{23}$
Rat, sheep	CES5A	CES7, cauxin	Lipid transfer reactions in epididymis ${ }^{24}$

${ }^{1}$ Pindel et al. 1997,
2 Bencharit et al. 2003,
${ }^{3}$ Satoh and Hosokawa 2006,
${ }^{4}$ Sun et al. 2004,
5 Takai et al. 1997,
${ }^{6}$ Humerickhouse et al. 2000, Xu et al. 2002, Ohtsuka et al. 2003, Morton et al. 2005,
$7_{\text {flurbiprofen derivatives serve as substrates, Imai 2006, Taketani et al. 2007, Hosokawa 2008, }}$,
${ }^{8}$ Diczfalusy et al. 2001,
${ }^{9}$ Hemmert et al. 2010,
${ }^{10}$ Mutch et al. 2007,
${ }^{11}$ Becker et al. 1994,
${ }^{12}$ Barthel et al. 2008,
${ }^{13}$ Krishnasamy et al. 1998, Ruppert et al. 2006,
${ }^{14}$ Morton et al. 2005,
${ }^{15}$ Dolinsky et al. 2005,
${ }^{16}$ Ovnic et al. 1991,
${ }^{17}$ Ellingham et al. 1998, Ko et al. 2009,
${ }^{18}$ Furihata et al. 2003,
${ }^{19}$ Sanghani et al. 2002,
${ }^{20}$ Ghosh et al. 1995, Okazaki et al. 2008,
21 Robbi and Beaufay 1994,
${ }^{22}$ Masaki et al. 2007,
${ }^{23}$ Miyazaki et al. 2006,
${ }^{24}$ Ecroyd et al. 2006, Zhang et al. 2009,
${ }^{25}$ Gilham et al. 2005,
${ }^{26}$ Schreiber et al. 2009,
${ }^{27}$ Lehner and Vance 1999,
28 Okazaki et al. 2006,
${ }^{29}$ Linke et al. 2005

[^0]: © Springer Science+Business Media, LLC 2010
 rholmes@sfbrgenetics.org.

