4 research outputs found

    EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription

    Get PDF
    Caveolae are small invaginated pits that function as dynamic mechanosensors to buffer tension variations at the plasma membrane. Here we show that under mechanical stress, the EHD2 ATPase is rapidly released from caveolae, SUMOylated, and translocated to the nucleus, where it regulates the transcription of several genes including those coding for caveolae constituents. We also found that EHD2 is required to maintain the caveolae reservoir at the plasma membrane during the variations of membrane tension induced by mechanical stress. Metal-replica electron microscopy of breast cancer cells lacking EHD2 revealed a complete absence of caveolae and a lack of gene regulation under mechanical stress. Expressing EHD2 was sufficient to restore both functions in these cells. Our findings therefore define EHD2 as a central player in mechanotransduction connecting the disassembly of the caveolae reservoir with the regulation of gene transcription under mechanical stress

    ContrÎle à distance de la mechano-signalisation JAK-STAT par les cavéoles

    No full text
    The plasma membrane of most eukaryotic cells possess specialized invaginated lipid nanodomains called caveolae. Like clathrin coated pits, caveolae possess a characteristic coat composed of a suite of essential proteins including caveolins and cavins [Parton and Simons 2007, Parton and del Pozo 2013, Lamaze et al. 2017]. In addition to being implicated in important cellular functions such as transcytosis, lipid homeostasis, endocytosis and signaling, caveolae have been recently shown to demonstrate a protective role in maintaining the integrity of the plasma membrane under conditions of mechanical stress [Sinha et al. 2011]. The caveolar pits act as ‘membrane reservoirs’ that can flatten out by disassembling their coat and thereby buffer the membrane tension variations resulting from mechanical stress. Following caveolae flattening, caveolins and the caveolar coat proteins are released and this event has been hypothesized to be involved in downstream signal transduction [Nassoy and Lamaze 2012]. The goal of my thesis work was to unravel the precise control of signaling by caveolae mechanics. Here we tried to dissect mechanotransduction through caveolae by elucidating the molecular events underlying the control of JAK-STAT signaling through disassembly of caveolae. Using state-of-the-art super resolution imaging combined with machine-learning network analysis, we show that in response to mechanical stress, caveolae disassemble into so-called smaller scaffolds (also known as non-caveolar caveolin-1 (Cav1) which display increased mobility at the plasma membrane. In addition, we found that Cav-1 negatively regulates JAK1 kinase dependent STAT3 phosphorylation. Furthermore, we revealed the interaction between Cav1 and JAK1 which increases upon an increase in mechanical stress and is mediated by the caveolin scaffolding domain (CSD). Taken together, our results demonstrate that caveolae can act as mechano-signaling organelles with an ability to remotely control downstream signal transduction from the plasma membrane.La membrane plasmique de la plupart des cellules eucaryotes possĂšde des nanodomaines lipidiques invaginĂ©s spĂ©cialisĂ©s appelĂ©s cavĂ©oles. Comme les puits recouverts de clathrine, les cavĂ©oles possĂšdent un manteau caractĂ©ristique composĂ© de protĂ©ines essentielles comprenant les cavĂ©olines et les cavines [Parton et Simons 2007, Parton et del Pozo 2013, Lamaze et.al 2017]. En plus d'ĂȘtre impliquĂ©es dans des fonctions cellulaires importantes telles que la transcytose, l'homĂ©ostasie lipidique, l'endocytose et la signalisation, le rĂŽle protecteur des cavĂ©oles dans le maintien de l'intĂ©gritĂ© de la membrane plasmique dans des conditions de stress mĂ©canique a rĂ©cemment Ă©tĂ© dĂ©montrĂ© [Sinha et al. 2011]. Les cavĂ©oles agissent comme des « rĂ©servoirs membranaires » qui peuvent s'aplatir en dĂ©mantelant leur manteau protĂ©ique et ainsi amortir les variations de tension membranaire rĂ©sultant des contraintes mĂ©caniques. AprĂšs l'aplatissement des cavĂ©oles, cavĂ©olines et leurs protĂ©ines d'enveloppe sont libĂ©rĂ©es et cet Ă©vĂ©nement a Ă©tĂ© supposĂ© ĂȘtre impliquĂ© dans la transduction du signal en aval [Nassoy et Lamaze 2012]. Le but de mon travail de thĂšse Ă©tait de dĂ©crypter le contrĂŽle prĂ©cis de la signalisation par la mĂ©canique des cavĂ©oles. Nous avons donc essayĂ© de dissĂ©quer la mĂ©canotransduction cavĂ©olaire en Ă©lucidant les Ă©vĂ©nements molĂ©culaires sous-jacents au contrĂŽle de la signalisation JAK-STAT par le dĂ©sassemblage des cavĂ©oles. En combinant l’imagerie Ă  super rĂ©solution Ă  l’analyse de rĂ©seaux par apprentissage automatique (machine learning), nous montrons qu'en rĂ©ponse Ă  un stress mĂ©canique, les cavĂ©oles se fragmentent en assemblages plus petits (Ă©galement appelĂ©s cavĂ©oline-1 (Cav1) non cavĂ©olaires) qui prĂ©sentent une augmentation de leur mobilitĂ© au niveau de la membrane plasmique. En outre, nous avons constatĂ© que Cav-1 rĂ©gule nĂ©gativement la phosphorylation de STAT3 dĂ©pendante de la kinase JAK1. De plus, nous avons observĂ© l'interaction entre Cav1 et JAK1 qui augmente lors d'un stress mĂ©canique plus important et qui est mĂ©diĂ©e par le domaine d'Ă©chafaudage de la cavĂ©oline (CSD). L’ensemble de nos rĂ©sultats dĂ©montrent que les cavĂ©oles peuvent agir comme des organites de mĂ©cano-signalisation avec la capacitĂ© de contrĂŽler Ă  distance la transduction du signal en aval de la membrane plasmique

    ContrÎle à distance de la mechano-signalisation JAK-STAT par les cavéoles

    No full text
    La membrane plasmique de la plupart des cellules eucaryotes possĂšde des nanodomaines lipidiques invaginĂ©s spĂ©cialisĂ©s appelĂ©s cavĂ©oles. Comme les puits recouverts de clathrine, les cavĂ©oles possĂšdent un manteau caractĂ©ristique composĂ© de protĂ©ines essentielles comprenant les cavĂ©olines et les cavines [Parton et Simons 2007, Parton et del Pozo 2013, Lamaze et.al 2017]. En plus d'ĂȘtre impliquĂ©es dans des fonctions cellulaires importantes telles que la transcytose, l'homĂ©ostasie lipidique, l'endocytose et la signalisation, le rĂŽle protecteur des cavĂ©oles dans le maintien de l'intĂ©gritĂ© de la membrane plasmique dans des conditions de stress mĂ©canique a rĂ©cemment Ă©tĂ© dĂ©montrĂ© [Sinha et al. 2011]. Les cavĂ©oles agissent comme des « rĂ©servoirs membranaires » qui peuvent s'aplatir en dĂ©mantelant leur manteau protĂ©ique et ainsi amortir les variations de tension membranaire rĂ©sultant des contraintes mĂ©caniques. AprĂšs l'aplatissement des cavĂ©oles, cavĂ©olines et leurs protĂ©ines d'enveloppe sont libĂ©rĂ©es et cet Ă©vĂ©nement a Ă©tĂ© supposĂ© ĂȘtre impliquĂ© dans la transduction du signal en aval [Nassoy et Lamaze 2012]. Le but de mon travail de thĂšse Ă©tait de dĂ©crypter le contrĂŽle prĂ©cis de la signalisation par la mĂ©canique des cavĂ©oles. Nous avons donc essayĂ© de dissĂ©quer la mĂ©canotransduction cavĂ©olaire en Ă©lucidant les Ă©vĂ©nements molĂ©culaires sous-jacents au contrĂŽle de la signalisation JAK-STAT par le dĂ©sassemblage des cavĂ©oles. En combinant l’imagerie Ă  super rĂ©solution Ă  l’analyse de rĂ©seaux par apprentissage automatique (machine learning), nous montrons qu'en rĂ©ponse Ă  un stress mĂ©canique, les cavĂ©oles se fragmentent en assemblages plus petits (Ă©galement appelĂ©s cavĂ©oline-1 (Cav1) non cavĂ©olaires) qui prĂ©sentent une augmentation de leur mobilitĂ© au niveau de la membrane plasmique. En outre, nous avons constatĂ© que Cav-1 rĂ©gule nĂ©gativement la phosphorylation de STAT3 dĂ©pendante de la kinase JAK1. De plus, nous avons observĂ© l'interaction entre Cav1 et JAK1 qui augmente lors d'un stress mĂ©canique plus important et qui est mĂ©diĂ©e par le domaine d'Ă©chafaudage de la cavĂ©oline (CSD). L’ensemble de nos rĂ©sultats dĂ©montrent que les cavĂ©oles peuvent agir comme des organites de mĂ©cano-signalisation avec la capacitĂ© de contrĂŽler Ă  distance la transduction du signal en aval de la membrane plasmique.The plasma membrane of most eukaryotic cells possess specialized invaginated lipid nanodomains called caveolae. Like clathrin coated pits, caveolae possess a characteristic coat composed of a suite of essential proteins including caveolins and cavins [Parton and Simons 2007, Parton and del Pozo 2013, Lamaze et al. 2017]. In addition to being implicated in important cellular functions such as transcytosis, lipid homeostasis, endocytosis and signaling, caveolae have been recently shown to demonstrate a protective role in maintaining the integrity of the plasma membrane under conditions of mechanical stress [Sinha et al. 2011]. The caveolar pits act as ‘membrane reservoirs’ that can flatten out by disassembling their coat and thereby buffer the membrane tension variations resulting from mechanical stress. Following caveolae flattening, caveolins and the caveolar coat proteins are released and this event has been hypothesized to be involved in downstream signal transduction [Nassoy and Lamaze 2012]. The goal of my thesis work was to unravel the precise control of signaling by caveolae mechanics. Here we tried to dissect mechanotransduction through caveolae by elucidating the molecular events underlying the control of JAK-STAT signaling through disassembly of caveolae. Using state-of-the-art super resolution imaging combined with machine-learning network analysis, we show that in response to mechanical stress, caveolae disassemble into so-called smaller scaffolds (also known as non-caveolar caveolin-1 (Cav1) which display increased mobility at the plasma membrane. In addition, we found that Cav-1 negatively regulates JAK1 kinase dependent STAT3 phosphorylation. Furthermore, we revealed the interaction between Cav1 and JAK1 which increases upon an increase in mechanical stress and is mediated by the caveolin scaffolding domain (CSD). Taken together, our results demonstrate that caveolae can act as mechano-signaling organelles with an ability to remotely control downstream signal transduction from the plasma membrane
    corecore