18 research outputs found

    Development and Evaluation of a Psychosocial Intervention for Children and Teenagers Experiencing Diabetes (DEPICTED): a protocol for a cluster randomised controlled trial of the effectiveness of a communication skills training programme for healthcare professionals working with young people with type 1 diabetes

    Get PDF
    Background Diabetes is the third most common chronic condition in childhood and poor glycaemic control leads to serious short-term and life-limiting long-term complications. In addition to optimal medical management, it is widely recognised that psychosocial and educational factors play a key role in improving outcomes for young people with diabetes. Recent systematic reviews of psycho-educational interventions recognise the need for new methods to be developed in consultation with key stakeholders including patients, their families and the multidisciplinary diabetes healthcare team. Methods/design Following a development phase involving key stakeholders, a psychosocial intervention for use by paediatric diabetes staff and not requiring input from trained psychologists has been developed, incorporating a communication skills training programme for health professionals and a shared agenda-setting tool. The effectiveness of the intervention will be evaluated in a cluster-randomised controlled trial (RCT). The primary outcome, to be measured in children aged 4-15 years diagnosed with type 1 diabetes for at least one year, is the effect on glycaemic control (HbA1c) during the year after training of the healthcare team is completed. Secondary outcomes include quality of life for patients and carers and cost-effectiveness. Patient and carer preferences for service delivery will also be assessed. Twenty-six paediatric diabetes teams are participating in the trial, recruiting a total of 700 patients for evaluation of outcome measures. Half the participating teams will be randomised to receive the intervention at the beginning of the trial and remaining centres offered the training package at the end of the one year trial period. Discussion The primary aim of the trial is to determine whether a communication skills training intervention for specialist paediatric diabetes teams will improve clinical and psychological outcomes for young people with type 1 diabetes. Previous research indicates the effectiveness of specialist psychological interventions in achieving sustained improvements in glycaemic control. This trial will evaluate an intervention which does not require the involvement of trained psychologists, maximising the potential feasibility of delivery in a wider NHS context. Trial registration Current Controlled Trials ISRCTN61568050

    Genome-wide association for major depression through age at onset stratification:Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium

    Get PDF
    Background Major depressive disorder (MDD) is a disabling mood disorder and, despite a known heritable component, a large meta-analysis of GWAS revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age-at-onset (AAO) in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by AAO. Method Discovery case-control GWASs were performed where cases were stratified using increasing/decreasing AAO-cutoffs; significant SNPs were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 controls for sub-setting. Polygenic score analysis was used to examine if differences in shared genetic risk exists between earlier and adult onset MDD with commonly co-morbid disorders of schizophrenia, bipolar disorder, Alzheimer’s disease, and coronary artery disease. Results We identify one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, OR=1.16, 95%CI=1.11-1.21, p=5.2x10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset. Conclusions We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder

    Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance

    No full text
    Hypoglycemia initiates the counter regulatory response (CRR), in which the sympathetic nervous system, glucagon, and glucocorticoids restore glucose to appropriate concentrations. During starvation, low leptin restrains energy utilization, enhancing long-term survival. To ensure short-term survival during hypoglycemia in fasted animals, the CRR must overcome this energy-sparing program and nutrient depletion. Here, we identify in mice a previously unrecognized role for leptin and a population of leptin-regulated neurons that modulate the CRR to meet these challenges. Hypoglycemia activates leptin receptor (LepRb) and cholecystokinin (CCK)-expressing neurons of the parabrachial nucleus (PBN), which project to the ventromedial hypothalamic nucleus. Leptin inhibits these cells and Cck(cre)-mediated ablation of LepRb enhances the CRR. Inhibition of PBN LepRb cells blunts the CRR, while their activation mimics the CRR in a CCK-dependent manner. PBN LepRb(CCK) neurons represent a crucial component of the CRR system, and may represent a therapeutic target in hypoglycemia

    A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies.

    No full text
    The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes
    corecore