216 research outputs found

    Dynamical subset sampling of quantum error correcting protocols

    Full text link
    Quantum error correcting (QEC) stabilizer codes enable protection of quantum information against errors during storage and processing. Simulation of noisy QEC codes is used to identify the noise parameters necessary for advantageous operation of logical qubits in realistic quantum computing architectures. Typical quantum error correction techniques contain intermediate measurements and classical feedback that determine the actual noisy circuit sequence in an instance of performing the protocol. Dynamical subset sampling enables efficient simulation of such non-deterministic quantum error correcting protocols for any type of quantum circuit and incoherent noise of low strength. As an importance sampling technique, dynamical subset sampling allows one to effectively make use of computational resources to only sample the most relevant sequences of quantum circuits in order to estimate a protocol's logical failure rate with well-defined error bars. We demonstrate the capabilities of dynamical subset sampling with examples from fault-tolerant (FT) QEC. We show that, in a typical stabilizer simulation with incoherent Pauli noise of strength p=10−3p = 10^{-3}, our method can reach a required sampling accuracy on the logical failure rate with two orders of magnitude fewer samples than direct Monte Carlo simulation. Furthermore, dynamical subset sampling naturally allows for efficient simulation of realistic multi-parameter noise models describing faulty quantum processors. It can be applied not only for QEC in the circuit model but any noisy quantum computing framework with incoherent fault operators including measurement-based quantum computation and quantum networks.Comment: 33 pages, 26 figure

    Assessment of Psychological Distress and Peer Relations among Trans Adolescents—An Examination of the Use of Gender Norms and Parent–Child Congruence of the YSR-R/CBCL-R among a Treatment-Seeking Sample

    Get PDF
    Among trans adolescents, increased psychological distress is reported in the literature. The goal of this study was to examine psychological distress, associated peer relations and parent report congruence among the treatment-seeking sample of the Gender Identity Special Consultation (GISC) for youth at the Charite Berlin. Further, differences between the instruments' binary gender norms were investigated. Retrospectively, we analyzed clinical data derived from the GISC. By initial interviews and using the Youth Self-Report and Child Behavior Checklist, n = 50 trans adolescents aged 12-18 years (M = 15.5) were examined for psychological problems and peer relations. Congruence between self and parent report was analyzed by correlations. Half of the sample reported suicidality, self-harm and bullying. Trans adolescents showed significantly higher internalizing and total problems than the German norm population. The congruence between self and parent report proved to be moderate to high. The level of congruence and poor peer relations were identified as predictors of internalizing problems. Significant differences between the female vs. male gender norms emerged regarding mean scores and the number of clinically significant cases. Data provide valuable implications for intervention on a peer and family level. There are limitations to the suitability of questionnaires that use binary gender norms, and further research on adequate instruments and assessment is needed

    Recovery of graphite and cathode active materials from spent lithium-ion batteries by applying two pretreatment methods and flotation combined with a rapid analysis technique

    Get PDF
    This work investigates the comprehensive recycling of graphite and cathode active materials (LiNi0.6Mn0.2Co0.2O2, abbreviated as NMC) from spent lithium-ion batteries via pretreatment and flotation. Specific analytical methods (SPME-GC-MS and Py-GC-MS) were utilized to identify and trace the relevant influencing factors. Two different pretreatment methods, which are Fenton oxidation and roasting, were investigated with respect to their influence on the flotation effectiveness. As a result, for NMC cathode active materials, a recovery of 90% and a maximum grade of 83% were obtained by the optimized roasting and flotation. Meanwhile, a graphite grade of 77% in the froth product was achieved, with a graphite recovery of 75%. By using SPME-GC-MS and Py-GC-MS analyses, it could be shown that, in an optimized process, an effective destruction/removal of the electrolyte and binder residues can be reached. The applied analytical tools could be integrated into the workflow, which enabled process control in terms of the pretreatment sufficiency and achievable separation in the subsequent flotation

    Finding approximate gene clusters with GECKO 3

    Get PDF
    Winter S, Jahn K, Wehner S, et al. Finding approximate gene clusters with GECKO 3. Nucleic Acids Research. 2016;44(20):9600-9610.Gene-order-based comparison of multiple genomes provides signals for functional analysis of genes and the evolutionary process of genome organization. Gene clusters are regions of co-localized genes on genomes of different species. The rapid increase in sequenced genomes necessitates bioinformatics tools for finding gene clusters in hundreds of genomes. Existing tools are often restricted to few (in many cases, only two) genomes, and often make restrictive assumptions such as short perfect conservation, conserved gene order or monophyletic gene clusters. We present Gecko 3, an open-source software for finding gene clusters in hundreds of bacterial genomes, that comes with an easy-to-use graphical user interface. The underlying gene cluster model is intuitive, can cope with low degrees of conservation as well as misannotations and is complemented by a sound statistical evaluation. To evaluate the biological benefit of Gecko 3 and to exemplify our method, we search for gene clusters in a dataset of 678 bacterial genomes using Synechocystis sp. PCC 6803 as a reference. We confirm detected gene clusters reviewing the literature and comparing them to a database of operons; we detect two novel clusters, which were confirmed by publicly available experimental RNA-Seq data. The computational analysis is carried out on a laptop computer in <40 min

    Evaluation of an Early Intervention Model for Child and Adolescent Victims of Interpersonal Violence

    Get PDF
    Only the minority of youth exposed to traumatic events receive mental health care, as trauma-informed clinical services are lacking or are poorly accessible. In order to bridge this gap, the Outpatient Trauma Clinic (OTC) was founded, an easily accessible early, short-time intervention, with onward referral to follow-up treatment. This report presents the OTC’s interventional approach and first outcome data. Using a retrospective naturalistic design, we analyzed trauma- and intervention-related data of the sample (n = 377, 55.4% female, mean age 10.95, SD = 4.69). Following drop-out analyses, predictors for treatment outcome were identified by logistic regression. The majority (81.9%) was suffering from posttraumatic stress disorder (PTSD) or adjustment disorders. Around one forth dropped out of treatment; these cases showed higher avoidance symptoms at presentation. In 91%, psychological symptoms improved. Experience of multiple traumatic events was the strongest predictor for poor treatment outcome (B = −0.823, SE = 0.313, OR = 0.439, 95% CI 0.238–0.811). Around two thirds were connected to follow-up treatment. The OTC realized a high retention rate, initial improvement of symptoms and referral to subsequent longer-term psychotherapeutic treatment in the majority. Further dissemination of comparable early intervention models is needed, in order to improve mental health care for this vulnerable group

    Theory of Sound Field Synthesis

    Get PDF
    PDF version of the Theory of Sound Field Synthesis presented at http://sfstoolbox.org/en/3.0/

    Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood glucose levels. Macrophages represent the main immune cell population in PDAC contributing to PDAC development. It has already been shown that pancreatic ductal epithelial cells (PDEC) undergo epithelial-mesenchymal transition (EMT) when exposed to hyperglycemia or macrophages. Thus, this study aimed to investigate whether concomitant exposure to hyperglycemia and macrophages aggravates EMT-associated alterations in PDEC. Exposure to macrophages and elevated glucose levels (25 mM glucose) impacted gene expression of EMT inducers such as IL-6 and TNF-α as well as EMT transcription factors in benign (H6c7-pBp) and premalignant (H6c7-kras) PDEC. Most strikingly, exposure to hyperglycemic coculture with macrophages promoted downregulation of the epithelial marker E-cadherin, which was associated with an elevated migratory potential of PDEC. While blocking IL-6 activity by tocilizumab only partially reverted the EMT phenotype in H6c7-kras cells, neutralization of TNF-α by etanercept was able to clearly impair EMT-associated properties in premalignant PDEC. Altogether, the current study attributes a role to a T2DM-related hyperglycemic, inflammatory micromilieu in the acquisition of malignancy-associated alterations in premalignant PDEC, thus providing new insights on how metabolic diseases might promote PDAC initiation

    The influence of the COVID-19 pandemic on surgical therapy and care: a cross-sectional study

    Get PDF
    Background: Due to the COVID-19 pandemic, an extensive reorganisation of healthcare resources was necessary-with a particular impact on surgical care across all disciplines. However, the direct and indirect consequences of this redistribution of resources on surgical therapy and care are largely unknown. Methods: We analysed our prospectively collected standardised digital quality management document for all surgical cases in 2020 and compared them to the years 2018 and 2019. Periods with high COVID-19 burdens were compared with the reference periods in 2018 and 2019. Results: From 2018 to 2020, 10,723 patients underwent surgical treatment at our centres. We observed a decrease in treated patients and a change in the overall patient health status. Patient age and length of hospital stay increased during the COVID-19 pandemic (p = 0.004 and p = 0.002). Furthermore, the distribution of indications for surgical treatment changed in favour of oncological cases and less elective cases such as hernia repairs (p < 0.001). Postoperative thromboembolic and pulmonary complications increased slightly during the COVID-19 pandemic. There were slight differences for postoperative overall complications according to Clavien-Dindo, with a significant increase of postoperative mortality (p = 0.01). Conclusion: During the COVID-19 pandemic we did not see an increase in the occurrence, or the severity of postoperative complications. Despite a slightly higher rate of mortality and specific complications being more prevalent, the biggest change was in indication for surgery, resulting in a higher proportion of older and sicker patients with corresponding comorbidities. Further research is warranted to analyse how this changed demographic will influence long-term patient care

    Chitosan nanoparticles as antigen vehicles to induce effective tumor specific T cell responses

    Get PDF
    Cancer vaccinations sensitize the immune system to recognize tumor-specific antigens de novo or boosting preexisting immune responses. Dendritic cells (DCs) are regarded as the most potent antigen presenting cells (APCs) for induction of (cancer) antigen-specific CD8+ T cell responses. Chitosan nanoparticles (CNPs) used as delivery vehicle have been shown to improve anti-tumor responses. This study aimed at exploring the potential of CNPs as antigen delivery system by assessing activation and expansion of antigen-specific CD8+ T cells by DCs and subsequent T cell-mediated lysis of pancreatic ductal adenocarcinoma (PDAC) cells. As model antigen the ovalbumin-derived peptide SIINFEKL was chosen. Using imaging cytometry, intracellular uptake of FITC-labelled CNPs of three different sizes and qualities (90/10, 90/20 and 90/50) was demonstrated in DCs and in pro- and anti-inflammatory macrophages to different extents. While larger particles (90/50) impaired survival of all APCs, small CNPs (90/10) were not toxic for DCs. Internalization of SIINFEKL-loaded but not empty 90/10-CNPs promoted a pro-inflammatory phenotype of DCs indicated by elevated expression of pro-inflammatory cytokines. Treatment of murine DC2.4 cells with SIINFEKL-loaded 90/10-CNPs led to a marked MHC-related presentation of SIINFEKL and enabled DC2.4 cells to potently activate SIINFEKL-specific CD8+ OT-1 T cells finally leading to effective lysis of the PDAC cell line Panc-OVA. Overall, our study supports the suitability of CNPs as antigen vehicle to induce potent anti-tumor immune responses by activation and expansion of tumor antigen-specific CD8+ T cells
    • …
    corecore