826 research outputs found

    Searching for young Jupiter analogs around AP Col: L-band high-contrast imaging of the closest pre-main sequence star

    Get PDF
    The nearby M-dwarf AP Col was recently identified by Riedel et al. 2011 as a pre-main sequence star (age 12 - 50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L-band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m >= 0.5 - 1M_Jup for projected separations a>4.5 AU, and m >= 2 M_Jup for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models the mass limits increase by a factor of ~2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare around M-dwarfs, gravitational microlensing studies predict that ~17% of these stars host massive planets with orbital separations of 1-10 AU. Sensitive high-contrast imaging observations, like those presented here, will help to validate results from complementary detection techniques by determining the frequency of gas giant planets on wide orbits around M-dwarfs.Comment: Accepted for publication in ApJ, 6 pages text ApJ style (incl. references), 4 figures, 1 tabl

    Abuse of nutmeg seeds: Detectable by means of liquid chromatography-mass spectrometry techniques?

    Get PDF
    Numerous case reports of intoxications with nutmeg seeds (Myristica fragrans, Houtt.) can be found in literature often following their abuse, as psychotropic effects were described after ingestions of large doses. The successful detection of the main ingredients of the nutmeg seeds essential oil elemicin, myristicin, and safrole, as well as their metabolites in human urine by gas chromatography coupled to mass spectrometry (GC-MS) was already described. The aim of this study was to investigate the detectability of the main ingredients of nutmeg seeds and their metabolites in human blood and urine samples using liquid chromatography coupled to linear ion trap mass spectrometry (LC-LIT-MSn ) and liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS/MS) after nutmeg seed abuse. Sample material of three individuals was retrospectively investigated after a systematic screening approach indicated an intoxication with nutmeg seeds as a likely cause of symptoms. Metabolic patterns in plasma and urine using GC-MS were comparable with those described in earlier publications. Investigations using hyphenated liquid chromatography techniques lead to the detection of myristicin and safrole, as well as further metabolites not described using GC-MS and revealed sulfation as an additional Phase II metabolic pathway. These results might help to detect or confirm future intoxications with nutmeg seeds by using LC-MS techniques

    An apodizing phase plate coronagraph for VLT/NACO

    Full text link
    We describe a coronagraphic optic for use with CONICA at the VLT that provides suppression of diffraction from 1.8 to 7 lambda/D at 4.05 microns, an optimal wavelength for direct imaging of cool extrasolar planets. The optic is designed to provide 10 magnitudes of contrast at 0.2 arcseconds, over a D-shaped region in the image plane, without the need for any focal plane occulting mask.Comment: 9 pages, 5 figures, to appear in Proc. SPIE Vol. 773

    Confirmation and characterization of the protoplanet HD100546 b - Direct evidence for gas giant planet formation at 50 au

    Get PDF
    We present the first multi-wavelength, high-contrast imaging study confirming the protoplanet embedded in the disk around the Herbig Ae/Be star HD100546. The object is detected at LL' (3.8μm\sim 3.8\,\mu m) and MM' (4.8μm\sim 4.8\,\mu m), but not at KsK_s (2.1μm\sim 2.1\,\mu m), and the emission consists of a point source component surrounded by spatially resolved emission. For the point source component we derive apparent magnitudes of L=13.92±0.10L'=13.92\pm0.10 mag, M=13.33±0.16M'=13.33\pm0.16 mag, and Ks>15.43±0.11K_s>15.43\pm0.11 mag (3σ\sigma limit), and a separation and position angle of (0.457±0.014)"(0.457\pm0.014)" and (8.4±1.4)(8.4\pm1.4)^\circ, and (0.472±0.014)"(0.472\pm0.014)" and (9.2±1.4)(9.2\pm1.4)^\circ in LL' and MM', respectively. We demonstrate that the object is co-moving with HD100546 and can reject any (sub-)stellar fore-/background object. Fitting a single temperature blackbody to the observed fluxes of the point source component yields an effective temperature of Teff=932202+193T_{eff}=932^{+193}_{-202} K and a radius for the emitting area of R=6.92.9+2.7R=6.9^{+2.7}_{-2.9} RJupiter_{\rm Jupiter}. The best-fit luminosity is L=(2.30.4+0.6)104LSunL=(2.3^{+0.6}_{-0.4})\cdot 10^{-4}\,L_{\rm Sun}. We quantitatively compare our findings with predictions from evolutionary and atmospheric models for young, gas giant planets, discuss the possible existence of a warm, circumplanetary disk, and note that the de-projected physical separation from the host star of (53±2)(53\pm2) au poses a challenge standard planet formation theories. Considering the suspected existence of an additional planet orbiting at \sim13--14 au, HD100546 appears to be an unprecedented laboratory to study the formation of multiple gas giant planets empirically.Comment: Accepted for publication in ApJ; 13 pages incl. 9 figures, 2 tables and references in ApJ-styl

    Constraints on the nearby exoplanet Eps Ind Ab from deep near/mid-infrared imaging limits

    Get PDF
    © ESO 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1051/0004-6361/202140730The past decade has seen increasing efforts in detecting and characterising exoplanets by high contrast imaging in the near/mid-infrared, which is the optimal wavelength domain for studying old, cold planets. In this work, we present deep AO imaging observations of the nearby Sun-like star ϵ\epsilon Ind A with NaCo (LL^{\prime}) and NEAR (10-12.5 microns) instruments at VLT, in an attempt to directly detect its planetary companion whose presence has been indicated from radial velocity (RV) and astrometric trends. We derive brightness limits from the non-detection of the companion with both instruments, and interpret the corresponding sensitivity in mass based on both cloudy and cloud-free atmospheric and evolutionary models. For an assumed age of 5 Gyr for the system, we get detectable mass limits as low as 4.4 MJM_{\rm J} in NaCo LL^{\prime} and 8.2 MJM_{\rm J} in NEAR bands at 1.5\arcsec from the central star. If the age assumed is 1 Gyr, we reach even lower mass limits of 1.7 MJM_{\rm J} in NaCo LL^{\prime} and 3.5 MJM_{\rm J} in NEAR bands, at the same separation. However, based on the dynamical mass estimate (3.25 MJM_{\rm J}) and ephemerides from astrometry and RV, we find that the non-detection of the planet in these observations puts a constraint of 2 Gyr on the lower age limit of the system. NaCo offers the highest sensitivity to the planetary companion in these observations, but the combination with the NEAR wavelength range adds a considerable degree of robustness against uncertainties in the atmospheric models. This underlines the benefits of including a broad set of wavelengths for detection and characterisation of exoplanets in direct imaging studies.Peer reviewe

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b

    Get PDF
    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a <<20 MJup_\mathrm{Jup} widely separated (\sim8\arcsec, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS modes for coverage from 1 μ\mum to 20 μ\mum at resolutions of \sim1,000 - 3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the \textit{JWST} spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.Comment: Accepted ApJL Iterations of spectra reduced by the ERS team are hosted at this link: https://github.com/bemiles/JWST_VHS1256b_Reduction/tree/main/reduced_spectr

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned

    Full text link
    We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same dataset to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors, and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration, NIRISS AMI can reach contrast levels of 910\sim9-10 mag. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower mass exoplanets than ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal

    The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at 3.8μm\boldsymbol{3.8\,\rm{\mu m}}

    Full text link
    We present aperture masking interferometry (AMI) observations of the star HIP 65426 at 3.8μm3.8\,\rm{\mu m} as a part of the \textit{JWST} Direct Imaging Early Release Science (ERS) program obtained using the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument. This mode provides access to very small inner working angles (even separations slightly below the Michelson limit of 0.5λ/D{}0.5\lambda/D for an interferometer), which are inaccessible with the classical inner working angles of the \textit{JWST} coronagraphs. When combined with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the potential to probe a new portion of parameter space across a wide array of astronomical observations. Using this mode, we are able to achieve a contrast of ΔmF380M7.8\Delta m_{F380M}{\sim }7.8\,mag relative to the host star at a separation of {\sim}0.07\arcsec but detect no additional companions interior to the known companion HIP\,65426\,b. Our observations thus rule out companions more massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations 1020au{\sim}10{-}20\,\rm{au} from HIP\,65426, a region out of reach of ground or space-based coronagraphic imaging. These observations confirm that the AMI mode on \textit{JWST} is sensitive to planetary mass companions orbiting at the water frost line, even for more distant stars at \sim100\,pc. This result will allow the planning and successful execution of future observations to probe the inner regions of nearby stellar systems, opening essentially unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter
    corecore