46 research outputs found
A multi-imaging approach to study the root-soil interface
Background and Aims Dynamic processes occurring at the soil-root interface crucially influence soil physical, chemical and biological properties at a local scale around the roots, and are technically challenging to capture in situ. This study presents a novel multi-imaging approach combining fluorescence and neutron radiography that is able to simultaneously monitor root growth, water content distribution, root respiration and root exudation. Methods Germinated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography. Key Results The interrelated patterns of root growth and distribution in the soil, root respiration, exudation and water uptake could all be studied non-destructively and at high temporal and spatial resolution. The older parts of the root system with greater root-length density were associated with fast decreases of water content and rapid changes in oxygen concentration. pH values around the roots located in areas with low soil water content were significantly lower than the rest of the root system. Conclusions The results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root syste
Seasonal dynamics modifies fat of oxygen, nitrate, and organic micropollutants during bank filtration - temperature-dependent reactive transport modeling of field data
Bank filtration is considered to improve water quality through microbially mediated degradation of pollutants and is suitable for waterworks to increase their production. In particular, aquifer temperatures and oxygen supply have a great impact on many microbial processes. To investigate the temporal and spatial behavior of selected organic micropollutants during bank filtration in dependence of relevant biogeochemical conditions, we have set up a 2D reactive transport model using MODFLOW and PHT3D under the user interface ORTI3D. The considered 160-m-long transect ranges from the surface water to a groundwater extraction well of the adjacent waterworks. For this purpose, water levels, temperatures, and chemical parameters were regularly measured in the surface water and groundwater observation wells over one and a half years. To simulate the effect of seasonal temperature variations on microbial mediated degradation, we applied an empirical temperature factor, which yields a strong reduction of the degradation rate at groundwater temperatures below 11 °C. Except for acesulfame, the considered organic micropollutants are substantially degraded along their subsurface flow paths with maximum degradation rates in the range of 1
A profile shape correction to reduce the vertical sensitivity of cosmic-ray neutron sensing of soil moisture
n recent years, cosmic-ray neutron sensing (CRNS) has shown a large potential among proximal sensing techniques to monitor soil moisture noninvasively, with high frequency and a large support volume (radius up to 240 m and sensing depth up to 80 cm). This signal is, however, more sensitive to closer distances and shallower depths. Inherently, CRNS-derived soil moisture is a spatially weighted value, different from an average soil moisture as retrieved by a sensor network. In this study, we systematically test a new profile shape correction on CRNS-derived soil moisture, based on additional soil moisture profile measurements and vertical unweighting, which is especially relevant during pronounced wetting or drying fronts. The analyses are conducted with data collected at four contrasting field sites, each equipped with a CRNS probe and a distributed soil moisture sensor network. After applying the profile shape correction on CRNS-derived soil moisture, it is compared with the sensor network average. Results show that the influence of the vertical sensitivity of CRNS on integral soil moisture values is successfully reduced. One to three properly located profile measurements within the CRNS support volume improve the performance. For the four investigated field sites, the RMSE decreased 11–53% when only one profile location was considered. We therefore recommend to install along with a CRNS at least one soil moisture profile in a radial distanceProfile-shape-corrected, CRNS-derived soil moisture is an unweighted integral soil moisture over the support volume, which is easier to interpret and easier to use for further applications
Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport
Notice: the article has been corrected and updated.
Use this link for up-to-date information: https://doi.org/10.1007/s10040-019-02063-
Testing a novel sensor design to jointly measure cosmic-ray neutrons, muons and gamma rays for non-invasive soil moisture estimation
Cosmic-ray neutron sensing (CRNS) has emerged as a reliable method for soil moisture and snow estimation. However, the applicability of this method beyond research has been limited due to, among others, the use of relatively large and expensive sensors. This paper presents the tests conducted on a new scintillator-based sensor especially designed to jointly measure neutron counts, muons and total gamma rays. The neutron signal is first compared against two conventional gas-tube-based CRNS sensors at two locations. The estimated soil moisture is further assessed at four agricultural sites, based on gravimetric soil moisture collected within the sensor footprint. Muon fluxes are compared to the incoming neutron variability measured at a neutron monitoring station and total gammas counts are compared to the signal detected by a gamma ray spectrometer. The results show that the neutron dynamic detected by the new scintillator-based CRNS sensor is well in agreement with conventional CRNS sensors. The derived soil moisture also agreed well with the gravimetric soil moisture measurements. The muons and the total gamma rays simultaneously detected by the sensor show promising features to account for the incoming variability and for discriminating irrigation and precipitation events, respectively. Further experiments and analyses should be conducted, however, to better understand the accuracy and the added value of these additional data for soil moisture estimation. Overall, the new scintillator design shows to be a valid and compact alternative to conventional CRNS sensors for non-invasive soil moisture monitoring and to open the path to a wide range of applications.</p
Coupled simulation of groundwater and drainage dynamics in a coastal fen
Küstennahe Niedermoore wurden durch den Menschen verändert, bspw. durch das Anlegen von Entwässerungsgräben, dem Bau von Küstenschutzdeichen oder aktuell einer Renaturierung. Außerdem ist es wichtig die komplexe Interaktion mit der See zu verstehen, um Aussagen über die zukünftige Entwicklung treffen zu können. In der vorliegenden Studie wurde die ober- und unterirdische Strömung in einem Feuchtgebiet an der mecklenburgischen Ostseeküste nahe Warnemünde (Deutschland) untersucht, um dessen wechselseitigen Austausch mit der Ostsee zu quantifizieren und zu analysieren, wie sich ein Sturmhochwasserereignis auf den Salzeintrag ins Gebiet auswirkt. Hierfür wurde ein dreidimensionales instationäres Grundwassermodell erstellt, mit einem eindimensionalen Modell des Grabensystems gekoppelt und mit Messungen im Gebiet kalibriert und verglichen. Die Ergebnisse zeigen, dass neben der oberirdischen Entwässerung auch der Grundwasserabstrom in Richtung Ostsee eine wesentliche Komponente der Wasserbilanz darstellt. Das Verhalten entlang der Küste wird deutlich durch die Dynamik der Ostseewasserstände geprägt, wobei ein Grundwasserabstrom mit einem Zustrom von Ostseewasser bei hohen Küstenwasserständen innerhalb täglicher bis wöchentlicher Zeitskalen wechselt.Universität Potsdam (1031
Non-invasive detection and localization of microplastic particles in a sandy sediment by complementary neutron and X-ray tomography
Purpose:
Microplastics have become a ubiquitous pollutant in marine, terrestrial and freshwater systems that seriously affects aquatic and terrestrial ecosystems. Common methods for analysing microplastic abundance in soil or sediments are based on destructive sampling or involve destructive sample processing. Thus, substantial information about local distribution of microplastics is inevitably lost.
Methods:
Tomographic methods have been explored in our study as they can help to overcome this limitation because they allow the analysis of the sample structure while maintaining its integrity. However, this capability has not yet been exploited for detection of environmental microplastics. We present a bimodal 3D imaging approach capable to detect microplastics in soil or sediment cores non-destructively.
Results:
In a first pilot study, we demonstrate the unique potential of neutrons to sense and localize microplastic particles in sandy sediment. The complementary application of X-rays allows mineral grains to be discriminated from microplastic particles. Additionally, it yields detailed information on the 3D surroundings of each microplastic particle, which supports its size and shape determination.
Conclusion:
The procedure we developed is able to identify microplastic particles with diameters of approximately 1 mm in a sandy soil. It also allows characterisation of the shape of the microplastic particles as well as the microstructure of the soil and sediment sample as depositional background information. Transferring this approach to environmental samples presents the opportunity to gain insights of the exact distribution of microplastics as well as their past deposition, deterioration and translocation processes.Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft (DE