45 research outputs found

    Estimation of Walnut Structure Parameters Using Terrestrial Photogrammetry Based on Structure-from-Motion (SfM)

    Full text link
    [EN] Remote sensing techniques are increasingly used for crop monitoring to improve the profitability of plantations. These studies are mainly based on spectral information recorded by satellites or unmanned aerial vehicles. However, the development of Earth Observation Systems capable of retrieving 3D point clouds at an affordable cost enables the possibility of exploring new approaches in agriculture. In this context, more research is required to analyze the capability of 3D data for inventory, management and prediction of inputs (water, fertilizers and pesticides) and outputs (production, biomass) of fruit plantations. To do this, the complete representation of each tree contribute to extract the main geometric parameters. The objective of this work is to obtain regression models to estimate total height (H-t), crown height (H-c), stem diameter (D-s), crown diameter (D-c), stem volume (V-s) and crown volume (V-c) from 45 walnut specimens. For this, 3D models were computed for these trees by applying ground-based Structure from Motion (SfM). A circular photogrammetric survey of each tree was carried out using a standard digital camera and three-dimensional point clouds were retrieved for each tree. From these data, the tree parameters were computed. Linear regression models were obtained to estimate H-t, H-c, D-s, D-c, V-s and V-c, with R-2 values between 0.89 and 0.99. The results showed accurate fits between field parameters and those derived from 3D point clouds retrieved from SfM technique, indicating the applicability of this cost-effective method to model walnut trees and to extract their accurate parameters without costly field campaigns.Fernández-Sarría, A.; López- Cortés, I.; Marti-Gavila, J.; Estornell Cremades, J. (2022). Estimation of Walnut Structure Parameters Using Terrestrial Photogrammetry Based on Structure-from-Motion (SfM). Journal of the Indian Society of Remote Sensing. 50(10):1931-1944. https://doi.org/10.1007/s12524-022-01576-x193119445010Arnó, J., Masip, J., & Rosell-Polo, J. R. (2015). Influence of the scanned side of the row in terrestrial laser sensor applications in vineyards: Practical consequences. Precision Agriculture, 16(2), 119–128. https://doi.org/10.1007/s11119-014-9364-7Arnó, J., Vallès, J. M., Llorens, J., Sanz, R., Masip, J., Palacín, J., & Rosell-Polo, J. R. (2013). Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agriculture, 14(3), 290–306. https://doi.org/10.1007/s11119-012-9295-0Auat Cheein, F., Guivant, J., Sanz, R., Escolà, A., Yandún, F., Torres-Torriti, M., & Rosell-Polo, J. R. (2015). Real-time approaches for characterization of fully and partially scanned canopies in groves. COMPAG, 118, 361–371. https://doi.org/10.1016/j.compag.2015.09.017Bork, E. W., & Su, J. G. (2007). Integrating LiDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sensing of Environment, 111, 11–24. https://doi.org/10.1016/j.rse.2007.03.011Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H., Herold, M., & Kooistra, L. (2019). Non-destructivetree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sensing of Environment, 233, 111355. https://doi.org/10.1016/j.rse.2019.111355Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., & Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32, 1309–1332. https://doi.org/10.1109/tro.2016.2624754Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., & Kaasalainen, M. (2015). Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution, 6, 198–208. https://doi.org/10.1111/2041-210X.12301Chang, A., Jung, J., Maeda, M. M., & Landivar, J. (2017). Crop height monitoring with digital imagery from unmanned aerial system (UAS). COMPAG, 141, 232–237. https://doi.org/10.1016/j.compag.2017.07.008Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129–143. https://doi.org/10.1016/j.rse.2016.05.019Dalla, A., Rex, F., Almeida, D., Sanquetta, C., Silva, C., Moura, M., Wilkinson, B., et al. (2020). Measuring individual tree diameter and height using gatoreyehigh-density UAV-lidar in an integrated crop-livestock-forest system. Remote Sensing, 12, 863. https://doi.org/10.3390/rs12050863De Eugenio, A., Fernández-Landa, A., & Merino-de-Miguel, S. (2018). 3D models from terrestrial photogrammetry in the estimation of forest inventory variables. Revista de Teledetección, 51, 113–124. https://doi.org/10.4995/raet.2018.9174Díaz-Varela, R., de la Rosa, R., León, L., & Zarco-Tejada, P. (2015). High-Resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing, 7(4), 4213–4232. https://doi.org/10.3390/rs70404213Dong, J., Burnham, J.G., Boots, B., Rains, G., Dellaert, F. (2017). 4D crop monitoring: Spatio-temporal reconstruction for agriculture. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 3878–3885. https://doi.org/10.1109/ICRA.2017.7989447.Ehlert, D., Heisig, M., & Adamek, R. (2010). Suitability of a laser rangefinder to characterize winter wheat. Precision Agriculture, 11, 650–663.Escolà, A., Martínez-Casasnovas, J. A., Rufat, J., Arnó, J., Arbonés, A., Sebé, F., Pascual, M., Gregorio, E., & Rosell-Polo, J. R. (2017). Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precision Agriculture, 18, 111–132. https://doi.org/10.1007/s11119-016-9474-5Estornell, J., Ruiz, L. A., Velázquez-Martí, B., López-Cortés, I., Salazar, D., & Fernández-Sarría, A. (2015). Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data. Biomass and Bioenergy, 81, 315–321. https://doi.org/10.1016/j.biombioe.2015.07.015Estornell, J., Velázquez-Martí, A., Fernández-Sarría, A., López-Cortés, I., Martí-Gavilá, J., & Salazar, D. (2017). Estimation of structural attributes of walnut trees based on terrestrial laser scanning. Revista de Teledetección, 0(48), 67–76. https://doi.org/10.4995/raet.2017.7429Estornell, J., Velázquez-Martí, B., Fernández-Sarría, A., & Martí, J. (2018). Lidar methods for measurement of trees in urban forests. Journal of Applied Remote Sensing, 12(4), 046009. https://doi.org/10.1117/1.JRS.12.046009Fernández-Sarría, A., López-Cortés, I., Estornell, J., Velázquez-Martí, B., & Salazar, D. (2019). Estimating residual biomass of olive tree crops using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 75, 163–170. https://doi.org/10.1016/j.jag.2018.10.019Fernández-Sarría, A., Martínez, L., Velázquez-Martí, B., Sajdak, M., Estornell, J., & Recio, J. A. (2013). Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. COMPAG, 90, 176–185.Gené-Mola, J., Gregorio López, E., Auat Cheein, F. A., Guevara, J., Llorens Calveras, J., Sanz Cortiella, R., & Rosell Polo, J. R. (2020). Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. COMPAG, 168, 105121. https://doi.org/10.1016/j.compag.2019.105121Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J. R., Gallart, M., & Escolà, A. (2014). Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors, 14, 691–708. https://doi.org/10.3390/s140100691Goesele, M., Snavely, N., Seitz, S.M., Curless, B., Hoppe, H. (2007). Multi-view stereo for community photo collections. In Proceedings of the11th International Conference on Computer Vision, Rio de Janeiro, Brazil pp. 1–8. https://doi.org/10.1109/ICCV.2007.4408933.Gómez-Candón, D., De Castro, A. I., & López-Granados, F. (2014). Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture, 15(1), 44–56. https://doi.org/10.1007/s11119-013-9335-4Gonzalez de Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., Martius, C., Goodman, R., Disney, M., Manuri, S., et al. (2018). Estimation of above ground biomass of large tropical trees with terrestrial LiDAR. Methods in Ecology and Evolution, 9(2), 223–234. https://doi.org/10.1111/2041-210X.12904Guerra-Hernández, J., Cosenza, D. N., Estraviz Rodriguez, L. C., Silva, M., Tomé, M., Díaz-Varela, R. A., & González-Ferreiro, E. (2018). Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations. International Journal of Remote Sensing, 39(15–16), 5211–5235. https://doi.org/10.1080/01431161.2018.1486519Hadas, E., Borkowski, A., Estornell, J., & Tymkow, P. (2017). Automatic estimation of olive tree dendrometric parameters based on airborne laser scanning data using alpha-shape and principal component analysis. GIScience & Remote Sensing, 54(6), 898–917. https://doi.org/10.1080/15481603.2017.1351148Hargreaves, G. H. (1994). Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)Heinzel, J., & Huber, M. O. (2017). Tree stem diameter estimation from volumetric TLS image data. Remote Sensing, 9, 614. https://doi.org/10.3390/rs9060614Jay, S., Rabatel, G., Hadoux, X., Moura, D., & Gorretta, N. (2015). In-field crop row phenotyping from 3D modeling performed using Structure from motion. COMPAG, 110, 70–77.Jenkins, J., Chojnack, D., Heath, L., Birdsey, R. (2004). Comprehensive database of diameter-based biomass regressions for north american tree Species; United States Forest Service, Northeastern Research Station, p. 45.Jiménez-Brenes, F. M., López-Granados, F., Castro, A. I., Torres-Sánchez, J., Serrano, N., & Peña, J. M. (2017). Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods, 13, 1–15. https://doi.org/10.1186/s13007-017-0205-3Kankare, I., Räty, M., Yu, X., Holopainen, M., Vastaranta, M., Kantola, T., Hyyppä, J., Hyyppä, H., Alho, P., & Viitala, R. (2013). Single tree biomass modelling using airborne laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 66–73. https://doi.org/10.1016/j.isprsjprs.2013.08.008Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). LiDAR remote sensing for ecosystem studies. BioScience, 52, 19–30.Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakola, A., Guan, F., Holopainen, M., & Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63–77.López-Cortés, I., Martí-Gavilá, J., Estornell, J., Fernández-Sarría, A. (2019). Comparación de parámetros de olivos a partir de UAV y datos LiDAR aéreos. In Proceedings of XVIII Congreso de la Asociación Española de Teledetección, Valladolid, pp. 24–27 September 2019; pp. 439–442.Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94Maltamo, M., Räty, J., Korhonen, L., Kotivuori, E., Kukkonen, M., Peltola, H., Kangas, J., & Packalen, P. (2020). Prediction of forest canopy fuel parameters in managed boreal forests using multispectral and unispectral airborne laser scanning data and aerial images. European Journal of Remote Sensing. https://doi.org/10.1080/22797254.2020.1816142Miao, Y., Mulla, D. J., Randall, G. W., Vetsch, J. A., & Vintila, R. (2009). Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precision Agriculture, 10, 45–62. https://doi.org/10.1007/s11119-008-9091-zMiller, J., Morgenroth, J., & Gomez, C. (2015). 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban for Urban Green, 14(4), 932–940. https://doi.org/10.1016/j.ufug.2015.09.001Ministerio de Agricultura, Pesca y Alimentación (2019). Encuesta sobre superficies y rendimientos cultivos (ESYRCE). Encuesta de marco de áreas de España. p. 178. Retrieved 15 Sept 2021 from https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/.Miranda-Fuentes, A., Llorens, J., Rodriguez-Lizana, A., Cuenca, A., Gil, E., Blanco-Roldán, G. L., & Gil-Ribes, J. A. (2016). Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes. STOTEN, 568, 296–305. https://doi.org/10.1016/j.scitotenv.2016.06.013Moorthy, I., Miller, J. R., Jimenez Berni, J. A., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204–214. https://doi.org/10.1016/j.agrformet.2010.10.005Neuenschwander, A., & Pitts, K. (2019). The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247–259. https://doi.org/10.1016/j.rse.2018.11.005Palacín, J., Pallejà, T., Tresanchez, M., Sanz, R., Llorens, J., Ribes-Dasi, M., Masip, J., Arnó, J., Escolà, A., & Rosell, J. R. (2007). Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Transactions on Instrumentation and Measurement, 56(4), 1377–1383. https://doi.org/10.1109/TIM.2007.900126Pierzchala, M., Giguère, P., & Astrup, R. (2018). Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-slam. COMPAG, 145, 217–225. https://doi.org/10.1016/j.compag.2017.12.034Pitkänen, T. P., Raumonen, P., & Kangas, A. (2019). Measuring stem diameters with TLS in boreal forests complementary fitting procedure. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 294–306. https://doi.org/10.1016/j.isprsjprs.2018.11.027Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne LiDAR. Biomass and Bioenergy, 31(9), 646–655. https://doi.org/10.1016/j.biombioe.2007.06.022Sanz, R., Llorens, J., Escolà, A., Arnó, J., Planas, S., Román, C., & Rosell-Polo, J. R. (2018). LiDAR and non-LiDAR-based canopy parameters to estimate the leaf area in fruit trees and vineyard. Agricultural and Forest Meteorology, 260–261, 229–239. https://doi.org/10.1016/j.agrformet.2018.06.017Schlaegel, B. (1984). Green ash volume and weight tables. US Department of Agriculture, Forest Service, Southern Forest Experiment Station.Sheridan, R. D., Popescu, S. C., Gatziolis, D., Morgan, C. L. S., & Ku, N. W. (2015). Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the Pacific Northwest. Remote Sensing, 7, 229–255. https://doi.org/10.3390/rs70100229Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from Internet photo collections. International Journal of Computer Vision, 80(2), 189–210. https://doi.org/10.1007/s11263-007-0107-3Stereńczak, K., Kraszewski, B., Mielcarek, M., Piasecka, N., Lisiewicz, M., & Heurich, M. (2020). Mapping individual trees with airborne laser scanning data in an European lowland forest using a selfcalibration algorithm. International Journal of Applied Earth Observation and Geoinformation, 93, 102191. https://doi.org/10.1016/j.jag.2020.102191Tagarakis, A. C., Koundouras, S., Fountas, S., & Gemtos, T. (2018). Evaluation of the use of LIDAR laser scanner to map pruning wood in vineyards and its potential for management zones delineation. Precision Agriculture, 19, 334–347. https://doi.org/10.1007/s11119-017-9519-4Torres-Sánchez, J., de Castro, A., Peña, J. M., Jiménez-Brenes, F. M., Arquero, O., Lovera, M., et al. (2018). Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosystems Engineering, 176, 172–184. https://doi.org/10.1016/j.biosystemseng.2018.10.018Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE, 10(6), e0130479. https://doi.org/10.1371/journal.pone.0130479Valbuena, M. A., Santamaría, J., & Sanz, F. (2016). Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the national forest inventory data. Forest Systems, 25(1), e046. https://doi.org/10.5424/fs/2016251-05790Van der Zande, V., Hoet, W., Jonckheere, I., van Aardt, J., & Coppin, P. (2006). Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agricultural and Forest Meteorology, 141(2–4), 147–160. https://doi.org/10.1016/j.agrformet.2006.09.007Velázquez-Martí, B., Fernández-González, E., López-Cortes, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(2), 3208–3217. https://doi.org/10.1016/j.biombioe.2011.04.042Velázquez-Martí, B., López-Cortés, I., & Salazar, D. M. (2014). Dendrometric analysis of olive trees for wood biomass quantification in Mediterranean orchards. Agroforestry Systems, 88(5), 755–765. https://doi.org/10.1007/s10457-014-9718-1Walklate, P. J., Cross, J. V., Richardson, G. M., Murray, R. A., & Baker, D. E. (2002). Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosystems Engineering, 82(3), 253–267.Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopenka, P. (2016). Assessment of forest structure using two UAV Techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7, 62. https://doi.org/10.3390/f7030062Wang, X., Cheng, X., Gong, P., Huang, H., Li, Z., & Li, X. (2011). Earth science applications of ICESat/GLAS: A review. International Journal of Remote Sensing, 32(23), 8837–8864.Wieser, M., Mandlburger, G., Hollaus, M., Otepka, J., Glira, P., & Pfeifer, N. (2017). A case study of UAS borne laser scanning for measurement of tree stem diameter. Remote Sensing, 9, 1154. https://doi.org/10.3390/rs9111154Xie, Q., Dash, J., Huete, A., Jiang, A., Yin, G., Ding, Y., Peng, D., Hall, C. C., Brown, L., Shi, Y., et al. (2019). Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 80, 187–195. https://doi.org/10.1016/j.jag.2019.04.019Xing, D., Bergeron, J. C., Solarik, K. A., Tomm, B., Macdonald, S. E., Spence, J. R., & He, F. (2019). Challenges in estimating forest biomass: Use of allometric equations for three boreal tree species. Canadian Journal of Forest Research, 49(12), 1613–1622.Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 255, 89–99.Zhang, Z., Cao, L., & She, G. (2017). Estimating forest structural parameters using canopy metrics derived from airborne LiDAR data in subtropical forests. Remote Sens, 9, 940. https://doi.org/10.3390/rs909094

    Obtención de jarabes glucosados por hidrólisis enzimática empleando almidón de sorgo CIAPR-132

    Get PDF
    La presente investigación está encaminada al estudio de la posible sustitución del maíz por el sorgo en la producción de jarabes glucosados para la industria alimenticia, considerando la evaluación de las potencialidades de dicho cereal. En este sentido se realizó un diseño experimental compuesto del tipo 2k, utilizando  el Software Statgraphics Centurion XV en elprocesamiento de los resultados del proceso desarrolladoen el laboratorio. Para ello se analizó la influenciade las variables independientes: concentración deenzima alfa amilasa (X1) en los niveles de 0,06 y 0,16%p/p, la concentración de enzima amiloglucosidasa(AMG) (X2) en los niveles de 0,18 y 0,375 %p/p ytiempo de sacarificación (X3) de 24 y 48 horas sobrelas variables respuestas °Brix y Azúcares ReductoresTotales (ART); además se determinó el rendimiento de cada experimento, obteniéndose los mejores resultados para la mayor concentración de enzima alfaamilasa, concentración de enzima AMG y tiempo de sacarificación en los menores valores. Los mejores resultados se obtuvieron para el Brix de 52,22 y ARTde 68,76%

    Prediction models for estimating pruned biomass obtained from Platanus hispanica MĂĽnchh. used for material surveys in urban forests

    Full text link
    The amount of urban biomass waste derived from pruning operations represents a potential source of bioenergy little studied or considered in local bio-economies. This research focused on direct quantification of lignocellulosic residual biomass yielded during tree pruning, characterization of basic tree parameters and development of indirect biomass prediction models. Sample individuals of 30 Platanus hispanica Munchh. with mean diameter at breast height 23.56 cm, crown diameter 8.44 m, crown base height 3.76 m, and total height 11.57 m were examined. Wood formed 43.34% of pruned biomass before the drying process and wood moisture content in wet basis reached 40.16%. Mean quantity of dry biomass obtained per tree was 23.98 kg and standard deviation was 15.16 kg. Allometric relationships were analyzed. Significant coefficients of determination were observed for dry biomass and diameter at breast height (R-2 = 0.87), as well as for dry biomass and conical and parabolic crown volume (R-2 = 0.78). The best result (R-2 = 0.93) was obtained from a multiple regression model with several explicative variables. Indirect biomass prediction equations and characteristics of yielded residuals derived from this research can be useful for biomass planning and management purposes. These equations can be implemented for urban inventories, and the application of logistic models. The significance of this topic is beyond doubt for urban environment, especially for the possibilities of reducing carbon dioxide emissions and perspectives of biomass utilization as a biofuel. (C) 2013 Elsevier Ltd. All rights reserved.Sajdak, M.; Velázquez Martí, B.; López Cortés, I.; Fernández Sarriá, A.; Estornell Cremades, J. (2014). Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests. Renewable Energy. 66:178-184. doi:10.1016/j.renene.2013.12.005S1781846

    Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations

    Get PDF
    The appearance of "magic" heights of Pb islands grown on Cu(111) is studied by self-consistent electronic structure calculations. The Cu(111) substrate is modeled with a one-dimensional pseudopotential reproducing the essential features, i.e. the band gap and the work function, of the Cu band structure in the [111] direction. Pb islands are presented as stabilized jellium overlayers. The experimental eigenenergies of the quantum well states confined in the Pb overlayer are well reproduced. The total energy oscillates as a continuous function of the overlayer thickness reflecting the electronic shell structure. The energies for completed Pb monolayers show a modulated oscillatory pattern reminiscent of the super-shell structure of clusters and nanowires. The energy minima correlate remarkably well with the measured most probable heights of Pb islands. The proper modeling of the substrate is crucial to set the quantitative agreement.Comment: 4 pages, 4 figures. Submitte

    Estimating residual biomass of olive tree crops using terrestrial laser scanning

    Full text link
    [EN] Agricultural residues have gained increasing interest as a source of renewable energy. The development of methods and techniques that allow to inventory residual biomass needs to be explored further. In this study, the residual biomass of olive trees was estimated based on parameters derived from using a Terrestrial Laser Scanning System (TLS). To this end, 32 olive trees in 2 orchards in the municipality of Viver, Central Eastern Spain, were selected and measured using a TLS system. The residual biomass of these trees was pruned and weighed. Several algorithms were applied to the TLS data to compute the main parameters of the trees: total height, crown height, crown diameter and crown volume. Regarding the last parameter, 4 methods were tested: the global convex hull volume, the convex hull by slice volume, the section volume, and the volume measured by voxels. In addition, several statistics were computed from the crown points for each tree. Regression models were calculated to predict residual biomass using 3 sets of potential explicative variables: firstly, the height statistics retrieved from 3D cloud data for each crown tree, secondly, the parameters of the trees derived from TLS data and finally, the combination of both sets of variables. Strong relationships between residual biomass and TLS parameters (crown volume parameters) were found (R2 = 0.86, RMSE = 2.78 kg). The pruning biomass pre- diction fraction was improved by 6%, in terms of R2, when the variance of the crown-point elevations was selected (R2 = 0.92, RMSE = 2.01 kg). The study offers some important insights into the quantification of residual biomass, which is essential information for the production of biofuel.Fernández-Sarría, A.; López- Cortés, I.; Estornell Cremades, J.; Velázquez Martí, B.; Salazar Hernández, DM. (2019). Estimating residual biomass of olive tree crops using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation. 75:163-170. https://doi.org/https://doi.org/10.1016/j.jag.2018.10.019S1631707

    Estimación de parámetros de estructura de nogales utilizando láser escáner terrestre

    Full text link
    [EN] Juglans regia L. (walnut) is a tree of significant economic importance, usually cultivated for its seed used in the food market, and for its wood used in the furniture industry. The aim of this work was to develop regression models to predict crown parameters for walnut trees using a terrestrial laser scanner. A set of 30 trees was selected and the total height, crown height and crown diameter were measured in the field. The trees were also measured by a laser scanner and algorithms were applied to compute the crown volume, crown diameter, total and crown height. Linear regression models were calculated to estimate walnut tree parameters from TLS data. Good results were obtained with values of R2 between 0.90 and 0.98. In addition, to analyze whether coarser point cloud densities might affect the results, the point clouds for all trees were subsampled using different point densities: points every 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m. New regression models were calculated to estimate field parameters. For total height and crown volume good estimations were obtained from TLS parameters derived for all subsampled point cloud (0.005 m – 2 m).[ES] Juglans regiaL. (nogal) es un árbol de importancia económica por el fruto que proporciona y por su madera utilizada en la industria del mueble. El objetivo de este trabajo fue calcular modelos de regresión para estimar los pa-rámetros altura total, altura, diámetro y volumen de copa de nogales utilizando datos registrados mediante un escáner láser terrestre. Un conjunto de 30 árboles fueron escaneados y se aplicaron algoritmos para calcular los parámetros anteriores, que también se midieron en campo utilizando técnicas tradicionales. Se obtuvieron buenos resultados, con valores de R2 entre 0,90 y 0,98 para todos los parámetros. Además, para analizar la relación entre la densidad de puntos registrada y la precisión en la estimación de los parámetros de los nogales, las nubes de puntos de todos los árboles fueron sub-muestreadas utilizando diferentes distancias de separación entre puntos: 0,005 m, 0,01 m, 0,05 m, 0,1 m, 0,25 m, 0,5 m, 1 m y 2 m. Se calcularon nuevos modelos de regresión con los datos muestreados obteniéndose buenas estimaciones de los parámetros para todos los conjuntos de datos.The authors appreciate the financial support provided by the regional government of Spain (Conselleria d'Educacio, Cultura i Esport Generalitat Valenciana) in the framework of the Project GV/2014/016.Estornell, J.; Velázquez-Martí, A.; Fernández-Sarría, A.; López-Cortés, I.; Martí-Gavilá, J.; Salazar, D. (2017). Estimation of structural attributes of walnut trees based on terrestrial laser scanning. Revista de Teledetección. (48):67-76. https://doi.org/10.4995/raet.2017.7429SWORD677648Belsley. D.A. 1991. Conditioning Diagnostics: Collinearity and Weak Data in Regression. John Wiley & Sons.Chianucci, F., Puletti, N., Giacomello, E., Cutini, A., & Corona, P. (2015). Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening, 14(2), 377-382. doi:10.1016/j.ufug.2015.04.001Corona, P., Agrimi, M., Baffetta, F., Barbati, A., Chiriacò, M. V., Fattorini, L., … Mattioli, W. (2011). Extending large-scale forest inventories to assess urban forests. Environmental Monitoring and Assessment, 184(3), 1409-1422. doi:10.1007/s10661-011-2050-6Fernández-Sarría, A., Martínez, L., Velázquez-Martí, B., Sajdak, M., Estornell, J., & Recio, J. A. (2013). Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. Computers and Electronics in Agriculture, 90, 176-185. doi:10.1016/j.compag.2012.09.017Gil, E., Llorens, J., Llop, J., Fàbregas, X., & Gallart, M. (2013). Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying. Sensors, 13(1), 516-534. doi:10.3390/s130100516Greaves, H. E., Vierling, L. A., Eitel, J. U. H., Boelman, N. T., Magney, T. S., Prager, C. M., & Griffin, K. L. (2015). Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sensing of Environment, 164, 26-35. doi:10.1016/j.rse.2015.02.023Keightley, K. E., & Bawden, G. W. (2010). 3D volumetric modeling of grapevine biomass using Tripod LiDAR. Computers and Electronics in Agriculture, 74(2), 305-312. doi:10.1016/j.compag.2010.09.005Manes, F., Incerti, G., Salvatori, E., Vitale, M., Ricotta, C., & Costanza, R. (2012). Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecological Applications, 22(1), 349-360. doi:10.1890/11-0561.1MAAM. 2015. Encuesta sobre superficies y rendimientos cultivos (ASYRCE). Encuesta de marco de áreas de Espa-a. Ministerio de Agricultura, Alimentación y Medio Ambiente de Espa-a, 44 pp.Rosell, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., … Palacín, J. (2009). Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology, 149(9), 1505-1515. doi:10.1016/j.agrformet.2009.04.008Rosell Polo, J. R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., … Palacín, J. (2009). A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering, 102(2), 128-134. doi:10.1016/j.biosystemseng.2008.10.009Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.00

    Lifetimes of image-potential states on copper surfaces

    Full text link
    The lifetime of image states, which represent a key quantity to probe the coupling of surface electronic states with the solid substrate, have been recently determined for quantum numbers n≤6n\le 6 on Cu(100) by using time-resolved two-photon photoemission in combination with the coherent excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We here report theoretical investigations of the lifetime of image states on copper surfaces. We evaluate the lifetimes from the knowledge of the self-energy of the excited quasiparticle, which we compute within the GW approximation of many-body theory. Single-particle wave functions are obtained by solving the Schr\"odinger equation with a realistic one-dimensional model potential, and the screened interaction is evaluated in the random-phase approximation (RPA). Our results are in good agreement with the experimentally determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children

    Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data

    Full text link
    The aim of this study is to analyze methodologies based on airborne LiDAR (light detection and ranging) technology of low pulse density points (0.5m(-2)) for height and volume quantification of olive trees in Viver (Spain). A total of 29 circular plots, each with a radius of 20m, were sampled and their volumes and heights were obtained by dendrometric methods. For these estimations, several statistics derived from LiDAR data were calculated in each plot. Regression models were used to predict volume and height. The results showed good performance for estimating volume (R-2=0.70) and total height (R-2=0.67).The authors appreciate the financial support provided by the Spanish Ministerio de Ciencia e Innovacion (Ministry for Science & Innovation) within the framework of the project AGL2010-15334 and by the Vice-Rectorate for Research of the Universitat Politecnica de Valencia [Grant PAID-06-12-3297; SP20120534].Estornell Cremades, J.; Velázquez Martí, B.; López Cortés, I.; Salazar Hernández, DM.; Fernández-Sarría, A. (2014). Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data. GIScience and Remote Sensing. 51(1):17-29. https://doi.org/10.1080/15481603.2014.883209S1729511Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Fernández-Sarría, A. (2011). Estimation of shrub biomass by airborne LiDAR data in small forest stands. Forest Ecology and Management, 262(9), 1697-1703. doi:10.1016/j.foreco.2011.07.026García, M., Riaño, D., Chuvieco, E., & Danson, F. M. (2010). Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816-830. doi:10.1016/j.rse.2009.11.021Hyyppa, J., Kelle, O., Lehikoinen, M., & Inkinen, M. (2001). A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing, 39(5), 969-975. doi:10.1109/36.921414Kim, Y., Yang, Z., Cohen, W. B., Pflugmacher, D., Lauver, C. L., & Vankat, J. L. (2009). Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment, 113(11), 2499-2510. doi:10.1016/j.rse.2009.07.010Moorthy, I., Miller, J. R., Berni, J. A. J., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204-214. doi:10.1016/j.agrformet.2010.10.005Næsset, E. (2004). Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project. Scandinavian Journal of Forest Research, 19(6), 554-557. doi:10.1080/02827580410019544Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy, 31(9), 646-655. doi:10.1016/j.biombioe.2007.06.022Popescu, S. C., Wynne, R. H., & Nelson, R. F. (2002). Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and Electronics in Agriculture, 37(1-3), 71-95. doi:10.1016/s0168-1699(02)00121-7Velázquez-Martí, B., Estornell, J., López-Cortés, I., & Martí-Gavilá, J. (2012). Calculation of biomass volume of citrus trees from an adapted dendrometry. Biosystems Engineering, 112(4), 285-292. doi:10.1016/j.biosystemseng.2012.04.011Velázquez-Martí, B., Fernández-González, E., Estornell, J., & Ruiz, L. A. (2010). Dendrometric and dasometric analysis of the bushy biomass in Mediterranean forests. Forest Ecology and Management, 259(5), 875-882. doi:10.1016/j.foreco.2009.11.027Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(7), 3208-3217. doi:10.1016/j.biombioe.2011.04.042Yu, X., Hyyppä, J., Kaartinen, H., & Maltamo, M. (2004). Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sensing of Environment, 90(4), 451-462. doi:10.1016/j.rse.2004.02.00

    Respiratory and mental health effects of wildfires: an ecological study in Galician municipalities (north-west Spain)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the summer of 2006, a wave of wildfires struck Galicia (north-west Spain), giving rise to a disaster situation in which a great deal of the territory was destroyed. Unlike other occasions, the wildfires in this case also threatened farms, houses and even human lives, with the result that the perception of disaster and helplessness was the most acute experienced in recent years. This study sought to analyse the respiratory and mental health effects of the August-2006 fires, using consumption of anxiolytics-hypnotics and drugs for obstructive airway diseases as indicators.</p> <p>Methods</p> <p>We conducted an analytical, ecological geographical- and temporal-cluster study, using municipality-month as the study unit. The independent variable was exposure to wildfires in August 2006, with municipalities thus being classified into the following three categories: no exposure; medium exposure; and high exposure. Dependent variables were: (1) anxiolytics-hypnotics; and (2) drugs for obstructive airway diseases consumption. These variables were calculated for the two 12-month periods before and after August 2006. Additive models for time series were used for statistical analysis purposes.</p> <p>Results</p> <p>The results revealed a higher consumption of drugs for obstructive airway diseases among pensioners during the months following the wildfires, in municipalities affected versus those unaffected by fire. In terms of consumption of anxiolytics-hypnotics, the results showed a significant increase among men among men overall -pensioners and non-pensioners- in fire-affected municipalities.</p> <p>Conclusions</p> <p>Our study indicates that wildfires have a significant effect on population health. The coherence of these results suggests that drug utilisation research is a useful tool for studying morbidity associated with environmental incidents.</p
    corecore