4 research outputs found

    Clay-fulleropyrrolidine nanocomposites

    Get PDF
    In this work, we describe the insertion of a water-soluble bisadduct fulleropyrrolidine derivative into the interlayer space of three layered smectite clays. The composites were characterized by a combination of powder X-ray diffraction, transmission electron microscopy, X-ray photoemission and FTIR spectroscopies, and laser flash photolysis measurements. The experiments, complemented by computer simulations, give insight into the formation process, structural details, and properties of the fullerene/clay nanocomposites. The reported composite materials constitute a new hybrid system, where C-60 differs from its crystals or its solutions, and open new perspectives for the design and construction of novel C-60-based organic/clay hybrid materials.</p

    Clay-fulleropyrrolidine nanocomposites

    Get PDF
    In this work, we describe the insertion of a water-soluble bisadduct fulleropyrrolidine derivative into the interlayer space of three layered smectite clays. The composites were characterized by a combination of powder X-ray diffraction, transmission electron microscopy, X-ray photoemission and FTIR spectroscopies, and laser flash photolysis measurements. The experiments, complemented by computer simulations, give insight into the formation process, structural details, and properties of the fullerene/clay nanocomposites. The reported composite materials constitute a new hybrid system, where C-60 differs from its crystals or its solutions, and open new perspectives for the design and construction of novel C-60-based organic/clay hybrid materials

    Chloride Anion Controlled Molecular “Switching”. Binding of 2,5,7-Trinitro-9-dicyanomethylenefluorene-C60 by Tetrathiafulvalene Calix[4]pyrrole and Photophysical Generation of Two Different Charge-Separated States

    Get PDF
    International audienceThe binding of the snake-like trinitrodicyanomethylenefluorene-C60 derivative (TNDCF-C60) to the dynamic receptor, tetrathiafulvalene calix[4]pyrrole (TTF-calix[4]pyrrole), may be controlled via the use of a chloride anion as an external trigger. Whereas, in the absence of a chloride anion, the TNDCF ?tail? of the trinitrodicyanomethylenefluorene-C60 substrate binds to the TTF?calix[4]pyrrole in a 2:1 (substrate/receptor) stoichiometry in CH2Cl2 solution, addition of a chloride anion (yellow) leads the TNDCF tail to be displaced in favor of a bound C60 ?head?, a process that leads to the formation of a complex with overall 1:2:2 substrate/receptor/chloride anion stoichiometry. These chemical switching events are reflected in easy-to-visualize color changes, as well as in the production of two different kinds of charge-separated states following selective femtosecond photoexcitation.</p
    corecore