375 research outputs found

    Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel

    Get PDF
    We present a density-functional study of a binary phase-separating mixture of soft core particles immersed in a random matrix of quenched soft core particles of larger size. This is a model for a binary polymer mixture immersed in a crosslinked rigid polymer network. Using the replica `trick' for quenched-annealed mixtures we derive an explicit density functional theory that treats the quenched species on the level of its one-body density distribution. The relation to a set of effective external potentials acting on the annealed components is discussed. We relate matrix-induced condensation in bulk to the behaviour of the mixture around a single large particle. The interfacial properties of the binary mixture at a surface of the quenched matrix display a rich interplay between capillary condensation inside the bulk matrix and wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.

    Beef Cattle Instance Segmentation Using Fully Convolutional Neural Network

    Get PDF
    In this paper we present a novel instance segmentation algorithm that extends a fully convolutional network to learn to label objects separately without prediction of regions of interest. We trained the new algorithm on a challenging CCTV recording of beef cattle, as well as benchmark MS COCO and Pascal VOC datasets. Extensive experimentation showed that our approach outperforms the state-of-the-art solutions by up to 8% on our data

    Concurrent Multi-Target Laser Ablation for Making Nano-Composite Films

    Get PDF
    New method of using laser ablation for film deposition that can be called as concurrent multi-beam multi-target matrix-assisted pulsed laser evaporation and pulsed laser deposition (MBMT-MAPLE/PLD) is described. Practical MBMT-MAPLE/PLD system built at Dillard University has three separate laser beams, three targets and the remotely controlled plume overlapping mechanism that provides even mixing of the target materials during their deposition on the substrate. The system accommodates MAPLE targets in the form of polymer solutions frozen with flowing liquid nitrogen. The feasibility of the method was demonstrated when it was used for making polymer nano-composite films with two inorganic additives: upconversion fluorescent phosphor NaYF4:Yb3+, Er3+ and aluminum-doped ZnO (AZO). Three laser beams, an infrared 1064-nm beam for the MAPLE and two 532-nm beams for the PLD targets, were concurrently used in the process. The fabricated nano-composite films were characterized using X-ray diffraction, scanning electron microscopy (SEM), optical fluorescent spectroscopy, and the measurement of the quantum efficiency (QE) of the upconversion fluorescence. The size of the inorganic nanoparticles varied in the range 10–200 nm. The AZO additive increased QE by 1.6 times. The conclusion was made on the feasibility of MBMT-MAPLE/PLD method for making multi-component nano-composite films for various applications

    Multi-Beam Multi-Target Pulsed Laser Deposition of AZO Films with Polymer Nanoparticles for Thermoelectric Energy Harvesters

    Get PDF
    In comparison with metallic thermoelectric films, oxide films with artificial nanodefects have been seldom studied. And there has been no report on the incorporation of island-shaped organic nanoparticles. We describe a new approach to introduce nanometer-sized phonon scatterers in aluminum-doped ZnO (AZO) thermoelectric thin films–concurrent multi-beam multi-target-pulsed laser deposition and the matrix-assisted pulsed laser evaporation (MBMT-PLD/MAPLE). The approach was used to make nanocomposite thin films of AZO matrix with evenly dispersed poly(methyl methacrylate) (PMMA) nanoparticles. The introduction of the nanoparticles enhanced phonon scattering with consequent decrease of thermal conductivity by 20%. The electrical conductivity did not decrease after the addition of the second phase, as it would be predicted by Wiedemann-Franz law, but improved by 350% over pure AZO film. The thermoelectric figure of merit of the nanocomposite film became twice that of the pure AZO film. Taking advantage of room-temperature deposition, optimized AZO nanocomposite films are expected to be used in real applications, such as thin film modules deposited on flexible polymeric substrates for ubiquitous harvesting of the waste heat

    Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity

    Get PDF
    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development

    Molecular Recognition Effects in Atomistic Models of Imprinted Polymers

    Get PDF
    In this article we present a model for molecularly imprinted polymers, which considers both complexation processes in the pre-polymerization mixture and adsorption in the imprinted structures within a single consistent framework. As a case study we investigate MAA/EGDMA polymers imprinted with pyrazine and pyrimidine. A polymer imprinted with pyrazine shows substantial selectivity towards pyrazine over pyrimidine, thus exhibiting molecular recognition, whereas the pyrimidine imprinted structure shows no preferential adsorption of the template. Binding sites responsible for the molecular recognition of pyrazine involve one MAA molecule and one EGDMA molecule, forming associations with the two functional groups of the pyrazine molecule. Presence of these specific sites in the pyrazine imprinted system and lack of the analogous sites in the pyrimidine imprinted system is directly linked to the complexation processes in the pre-polymerization solution. These processes are quite different for pyrazine and pyrimidine as a result of both enthalpic and entropic effects

    Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study

    Full text link
    We present a theoretical study of capillary condensation of fluids adsorbed in mesoporous disordered media. Combining mean-field density functional theory with a coarse-grained description in terms of a lattice-gas model allows us to investigate both the out-of-equilibrium (hysteresis) and the equilibrium behavior. We show that the main features of capillary condensation in disordered solids result from the appearance of a complex free-energy landscape with a large number of metastable states. We detail the numerical procedures for finding these states, and the presence or absence of transitions in the thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte
    corecore