20 research outputs found

    Ligand-induced dimerization of syndecan-3 at the cell surface

    Get PDF
    Syndecan-3 (N-syndecan) is a transmembrane heparan sulfate proteoglycan abundantly expressed in developing brain. In addition to acting as a coreceptor, syndecan-3 acts as a signaling receptor upon binding of its ligand HB-GAM (heparin-binding growth-associated molecule; pleiotrophin), which activates the cortactin-src kinase signaling pathway. This leads to rapid neurite extension in neuronal cells, which makes syndecan-3 as an interesting transmembrane receptor in neuronal development and regeneration. However, little is known about the signaling mechanism of syndecan-3. Here we have analyzed formation of ligand-N-syndecan signaling complexes at the cell surface using fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET). We show that ligand binding leads to dimerization of syndecan-3 at the cell surface. The dimerized syndecan-3 colocalizes with actin in the filopodia of cells. Several amino acid residues (K383, G392 and G396) in the transmembrane domain are shown to be important for the ligand-induced dimerization, whereas the cytosolic domain is not required for the dimerization.Peer reviewe

    Chronic exposure to short chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells

    Get PDF
    Dietary fibre-derived short chain fatty acids (SCFA) and phenolics produced by the gut microbiome have multiple effects on health. We have tested the hypothesis that long term exposure to physiological concentrations of SCFA can affect the transport and metabolism of (poly)phenols by the intestinal epithelium using the Caco-2 cell model. Metabolites and conjugates of hesperetin (HT) and ferulic acid (FA), gut-derived from dietary hesperidin and chlorogenic acid respectively, were quantified by LC–MS with authentic standards following transport across differentiated cell monolayers. Changes in metabolite levels were correlated with effects on mRNA and protein expression of key enzymes and transporters. Propionate and butyrate increased both FA transport and rate of appearance of FA-glucuronide apically and basolaterally, linked to an induction of MCT1. Propionate was the only SCFA that augmented the rate of formation of basolateral FA-sulfate conjugates, possibly via basolateral transporter upregulation. In addition, propionate enhanced the formation of HT-glucuronide conjugates and increased HT-sulfate efflux towards the basolateral compartment. Acetate treatment amplified transepithelial transport of FA in the apical to basolateral direction, associated with lower levels of MCT1 protein expression. Metabolism and transport of both HT and FA were curtailed by the organic acid lactate owing to a reduction of UGT1A1 protein levels. Our data indicate a direct interaction between microbiota-derived metabolites of (poly)phenols and SCFA through modulation of transporters and conjugating enzymes, and increase our understanding of how dietary fibre, via the microbiome, may affect and enhance uptake of bioactive molecules

    Transendothelial glucose transport is not restricted by extracellular hyperglycaemia

    Get PDF
    Endothelial cells are routinely exposed to elevated glucose concentrations post-prandially in healthy individuals and permanently in patients with metabolic syndrome and diabetes, and so we assessed their sugar transport capabilities in response to high glucose. In human umbilical vein (HUVEC), saphenous vein, microdermal vessels and aorta, GLUT1 (SLC2A1), GLUT3 (SLC2A3), GLUT6 (SLC2A6), and in microdermal vessels also GLUT12 (SLC2A12), were the main glucose transporters as assessed by mRNA, with no fructose transporters nor SGLT1 (SLC5A1). Uptake of 14C-fructose was negligible. GLUT1 and GLUT3 proteins were detected in all cell types and were responsible for ~ 60% glucose uptake in HUVEC, where both GLUT1 and GLUT3, but not GLUT6 siRNA knock-down, reduced the transport. Under shear conditions, GLUT1 protein decreased, GLUT3 increased, and 14C-deoxy-glucose uptake was attenuated. In high glucose, lipid storage was increased, cell numbers were lower, 14C-deoxy-glucose uptake decreased owing to attenuated GLUT3 protein and less surface GLUT1, and trans-endothelial transport of glucose increased due to cell layer permeability changes. We conclude that glucose transport by endothelial cells is relatively resistant to effects of elevated glucose. Cells would continue to supply it to the underlying tissues at a rate proportional to the blood glucose concentration, independent of insulin or fructose

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology

    Syndecan-4 associates with alpha-actinin.

    No full text
    corecore