71 research outputs found

    Hadamard Slice Encoding for Reduced-FOV Diffusion-Weighted Imaging

    Get PDF
    Cataloged from PDF version of article.Methods: A 2D echo-planar RF pulse and matching multiband refocusing RF pulses were designed using the Shinnar-Le Roux algorithm to reduce band interference, and variable-rate selective excitation to shorten the pulse durations. Hadamardencoded images were resolved through a phase-preserving image reconstruction. The performance of the method was evaluated via simulations, phantom experiments, and in vivo high-resolution axial DWI of spinal cord. Purpose: To improve the clinical utility of diffusion-weighted imaging (DWI) by extending the slice coverage of a highresolution reduced field-of-view technique. Theory: Challenges in achieving high spatial resolution restrict the use of DWI in assessment of small structures such as the spinal cord. A reduced field-of-view method with 2D echo-planar radiofrequency (RF) excitation was recently proposed for high-resolution DWI. Here, a Hadamard sliceencoding scheme is proposed to double the slice coverage by exploiting the periodicity of the 2D echo-planar RF excitation profile. Results: The proposed scheme successfully extends the slice coverage, while preserving the sharp excitation profile and the reliable fat suppression of the original method. For in vivo axial DWI of the spinal cord, an in-plane resolution of 0.7 × 0.7 mm2 was achieved with 16 slices. Conclusion: The proposed Hadamard slice-encoding scheme doubles the slice coverage of the 2D echo-planar RF reduced field-of-view method without any scan-time penalty. © 2013 Wiley Periodicals, Inc

    COVID-19 Detection from Respiratory Sounds with Hierarchical Spectrogram Transformers

    Full text link
    Monitoring of prevalent airborne diseases such as COVID-19 characteristically involves respiratory assessments. While auscultation is a mainstream method for preliminary screening of disease symptoms, its utility is hampered by the need for dedicated hospital visits. Remote monitoring based on recordings of respiratory sounds on portable devices is a promising alternative, which can assist in early assessment of COVID-19 that primarily affects the lower respiratory tract. In this study, we introduce a novel deep learning approach to distinguish patients with COVID-19 from healthy controls given audio recordings of cough or breathing sounds. The proposed approach leverages a novel hierarchical spectrogram transformer (HST) on spectrogram representations of respiratory sounds. HST embodies self-attention mechanisms over local windows in spectrograms, and window size is progressively grown over model stages to capture local to global context. HST is compared against state-of-the-art conventional and deep-learning baselines. Demonstrations on crowd-sourced multi-national datasets indicate that HST outperforms competing methods, achieving over 83% area under the receiver operating characteristic curve (AUC) in detecting COVID-19 cases

    Projection onto Epigraph Sets for Rapid Self-Tuning Compressed Sensing MRI

    Get PDF
    The compressed sensing (CS) framework leverages the sparsity of MR images to reconstruct from undersampled acquisitions. CS reconstructions involve one or more regularization parameters that weigh sparsity in transform domains against fidelity to acquired data. While parameter selection is critical for reconstruction quality, the optimal parameters are subject and dataset specific. Thus, commonly practiced heuristic parameter selection generalizes poorly to independent datasets. Recent studies have proposed to tune parameters by estimating the risk of removing significant image coefficients. Line searches are performed across the parameter space to identify the parameter value that minimizes this risk. Although effective, these line searches yield prolonged reconstruction times. Here, we propose a new self-tuning CS method that uses computationally efficient projections onto epigraph sets of the ℓ1 and total-variation norms to simultaneously achieve parameter selection and regularization. In vivo demonstrations are provided for balanced steady-state free precession, time-of-flight, and T1-weighted imaging. The proposed method achieves an order of magnitude improvement in computational efficiency over line-search methods while maintaining near-optimal parameter selection.IEEE Engineering in Medicine and Biology Society IEEE Signal Processing Society IEEE Nuclear and Plasma Sciences Society IEEE Ultrasonics, Ferroelectrics, and Frequency Control Societ

    Statistically segregated k-space sampling for accelerating multiple-acquisition MRI

    Get PDF
    A central limitation of multiple-acquisition magnetic resonance imaging (MRI) is the degradation in scan efficiency as the number of distinct datasets grows. Sparse recovery techniques can alleviate this limitation via randomly undersampled acquisitions. A frequent sampling strategy is to prescribe for each acquisition a different random pattern drawn from a common sampling density. However, naive random patterns often contain gaps or clusters across the acquisition dimension that in turn can degrade reconstruction quality or reduce scan efficiency. To address this problem, a statistically-segregated sampling method is proposed for multiple-acquisition MRI. This method generates multiple patterns sequentially, while adaptively modifying the sampling density to minimize k-space overlap across patterns. As a result, it improves incoherence across acquisitions while still maintaining similar sampling density across the radial dimension of k-space. Comprehensive simulations and in vivo results are presented for phase-cycled balanced steady-state free precession and multi-echo T2-weighted imaging. Segregated sampling achieves significantly improved quality in both Fourier and compressedsensing reconstructions of multiple-acquisition datasets

    Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study

    Get PDF
    BACKGROUND: The early to intermediate stages of the majority of colorectal tumours are thought to be driven by aberrations in the Wnt (APC, CTNNB1) and Ras (K-ras) pathways. A smaller proportion of cancers shows mismatch repair deficiency. The aim of this study was to analyse the co-occurrence of these genetic alterations in relation to tumour and patient characteristics. METHODS: In a group of 656 unselected sporadic colorectal cancer patients, aberrations in the APC, K-ras, CTNNB1 genes, and expression of hMLH1 were investigated. Additionally, tumours were divided in groups based on molecular features and compared with respect to patient's age at diagnosis, sex, family history of colorectal cancer, tumour sub-localisation, Dukes' stage and differentiation. RESULTS: Mutations at the phosphorylation sites (codons 31, 33, 37, and 45) in the CTNNB1 gene were observed in tumours from only 5/464 patients. Tumours with truncating APC mutations and activating K-ras mutations in codons 12 and 13 occurred at similar frequencies (37% (245/656) and 36% (235/656), respectively). Seventeen percent of tumours harboured both an APC and a K-ras mutation (109/656). Nine percent of all tumours (58/656) lacked hMLH1 expression. Patients harbouring a tumour with absent hMLH1 expression were older, more often women, more often had proximal colon tumours that showed poorer differentiation when compared to patients harbouring tumours with an APC and/or K-ras mutation. CONCLUSION: CTNNB1 mutations seem to be of minor importance in sporadic colorectal cancer. The main differences in tumour and patient characteristics are found between groups of patients based on mismatch repair deficiency

    Age- and region-specific hepatitis B prevalence in Turkey estimated using generalized linear mixed models: a systematic review

    Get PDF
    Toy M, Önder FO, Wörmann T, et al. Age- and region-specific hepatitis B prevalence in Turkey estimated using generalized linear mixed models: a systematic review. BMC infectious diseases. 2011;11(1): 337.BACKGROUND: To provide a clear picture of the current hepatitis B situation, the authors performed a systematic review to estimate the age- and region-specific prevalence of chronic hepatitis B (CHB) in Turkey. METHODS: A total of 339 studies with original data on the prevalence of hepatitis B surface antigen (HBsAg) in Turkey and published between 1999 and 2009 were identified through a search of electronic databases, by reviewing citations, and by writing to authors. After a critical assessment, the authors included 129 studies, divided into categories: 'age-specific'; 'region-specific'; and 'specific population group'. To account for the differences among the studies, a generalized linear mixed model was used to estimate the overall prevalence across all age groups and regions. For specific population groups, the authors calculated the weighted mean prevalence. RESULTS: The estimated overall population prevalence was 4.57, 95% confidence interval (CI): 3.58, 5.76, and the estimated total number of CHB cases was about 3.3 million. The outcomes of the age-specific groups varied from 2.84, (95% CI: 2.60, 3.10) for the 0-14-year olds to 6.36 (95% CI: 5.83, 6.90) in the 25-34-year-old group. CONCLUSION: There are large age-group and regional differences in CHB prevalence in Turkey, where CHB remains a serious health problem

    A continuing debate on 6-minute withdrawal time as a quality indicator during colonoscopy

    No full text
    WOS: 000309058400014PubMed: 2298721
    corecore