295 research outputs found

    Adolescents’ responses to the promotion and flavouring of e-cigarettes

    Get PDF
    Objectives The purpose of the study is to examine adolescents’ awareness of e-cigarette marketing and investigate the impact of e-cigarette flavour descriptors on perceptions of product harm and user image. Methods Data come from the 2014 Youth Tobacco Policy Survey, a cross-sectional in-home survey conducted with 11–16 year olds across the UK (n = 1205). Adolescents’ awareness of e-cigarette promotion, brands, and flavours was assessed. Perceptions of product harm, and likely user of four examples of e-cigarette flavours was also examined. Results Some participants had tried e-cigarettes (12 %) but regular use was low (2 %) and confined to adolescents who had also smoked tobacco. Most were aware of at least one promotional channel (82 %) and that e-cigarettes came in different flavours (69 %). Brand awareness was low. E-cigarettes were perceived as harmful (M = 3.54, SD = 1.19) but this was moderated by product flavours. Fruit and sweet flavours were perceived as more likely to be tried by young never smokers than adult smokers trying to quit (p < 0.001). Conclusions There is a need to monitor the impact of future market and regulatory change on youth uptake and perceptions of e-cigarettes

    A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans

    Get PDF
    One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo

    Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India

    Get PDF
    As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO3). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry.Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources inThanjavur city

    Maternal anaemia and duration of zidovudine in antiretroviral regimens for preventing mother-to-child transmission: a randomized trial in three African countries

    Get PDF
    Background: Although substantiated by little evidence, concerns about zidovudine-related anaemia in pregnancy have influenced antiretroviral (ARV) regimen choice for preventing mother-to-child transmission of HIV-1, especially in settings where anaemia is common. Methods: Eligible HIV-infected pregnant women in Burkina Faso, Kenya and South Africa were followed from 28 weeks of pregnancy until 12–24 months after delivery (n = 1070). Women with a CD4 count of 200-500cells/mm3 and gestational age 28–36 weeks were randomly assigned to zidovudine-containing triple-ARV prophylaxis continued during breastfeeding up to 6-months, or to zidovudine during pregnancy plus single-dose nevirapine (sd-NVP) at labour. Additionally, two cohorts were established, women with CD4 counts: \u3c200 cells/mm3 initiated antiretroviral therapy, and \u3e500 cells/mm3 received zidovudine during pregnancy plus sd-NVP at labour. Mild (haemoglobin 8.0-10.9 g/dl) and severe anaemia (haemoglobin \u3c 8.0 g/dl) occurrence were assessed across study arms, using Kaplan-Meier and multivariable Cox proportional hazards models. Results: At enrolment (corresponded to a median 32 weeks gestation), median haemoglobin was 10.3 g/dl (IQR = 9.2-11.1). Severe anaemia occurred subsequently in 194 (18.1%) women, mostly in those with low baseline haemoglobin, lowest socio-economic category, advanced HIV disease, prolonged breastfeeding (≥6 months) and shorter ARV exposure. Severe an- aemia incidence was similar in the randomized arms (equivalence P-value = 0.32). After 1–2 months of ARV’s, severe anaemia was significantly reduced in all groups, though remained highest in the low CD4 cohort. Conclusions: Severe anaemia occurs at a similar rate in women receiving longer triple zidovudine-containing regimens or shorter prophylaxis. Pregnant women with pre-existing anaemia and advanced HIV disease require close monitoring

    Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update

    Get PDF
    Large amounts of new data on the natural history and treatment of chronic hepatitis B virus (HBV) infection have become available since 2005. These include long-term follow-up studies in large community-based cohorts or asymptomatic subjects with chronic HBV infection, further studies on the role of HBV genotype/naturally occurring HBV mutations, treatment of drug resistance and new therapies. In addition, Pegylated interferon α2a, entecavir and telbivudine have been approved globally. To update HBV management guidelines, relevant new data were reviewed and assessed by experts from the region, and the significance of the reported findings were discussed and debated. The earlier “Asian-Pacific consensus statement on the management of chronic hepatitis B” was revised accordingly. The key terms used in the statement were also defined. The new guidelines include general management, special indications for liver biopsy in patients with persistently normal alanine aminotransferase, time to start or stop drug therapy, choice of drug to initiate therapy, when and how to monitor the patients during and after stopping drug therapy. Recommendations on the therapy of patients in special circumstances, including women in childbearing age, patients with antiviral drug resistance, concurrent viral infection, hepatic decompensation, patients receiving immune-suppressive medications or chemotherapy and patients in the setting of liver transplantation, are also included

    Nucleolar Proteins Suppress Caenorhabditis elegans Innate Immunity by Inhibiting p53/CEP-1

    Get PDF
    The tumor suppressor p53 has been implicated in multiple functions that play key roles in health and disease, including ribosome biogenesis, control of aging, and cell cycle regulation. A genetic screen for negative regulators of innate immunity in Caenorhabditis elegans led to the identification of a mutation in NOL-6, a nucleolar RNA-associated protein (NRAP), which is involved in ribosome biogenesis and conserved across eukaryotic organisms. Mutation or silencing of NOL-6 and other nucleolar proteins results in an enhanced resistance to bacterial infections. A full-genome microarray analysis on animals with altered immune function due to mutation in nol-6 shows increased transcriptional levels of genes regulated by a p53 homologue, CEP-1. Further studies indicate that the activation of innate immunity by inhibition of nucleolar proteins requires p53/CEP-1 and its transcriptional target SYM-1. Since nucleoli and p53/CEP-1 are conserved, our results reveal an ancient immune mechanism by which the nucleolus may regulate immune responses against bacterial pathogens

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses
    corecore