1,561 research outputs found

    THE SOCIO-SEXUAL EXPERIENCES IN SOUTHERN ITALIANS DURING THE COVID-19 PANDEMIC: A CLUSTERING ANALYSIS

    Get PDF
    The COVID-19 outbreak has dramatically impacted on socioeconomic structure, individual freedom, general wellbeing, psychological health and sexuality. Indeed, social distancing, home confinement and the fear of contagion have reduced the possibility of romantic encounters thus influencing sexual activity, desire and behavior and, consequently, modifying socio-sexual experiences. The aim of this study is to examine sociosexuality and sociosexual experiences in southern Italians during the COVID-19 pandemic

    THE SOCIO-SEXUAL EXPERIENCES IN SOUTHERN ITALIANS DURING THE COVID-19 PANDEMIC: A CLUSTERING ANALYSIS

    Get PDF
    The COVID-19 outbreak has dramatically impacted on socioeconomic structure, individual freedom, general wellbeing, psychological health and sexuality. Indeed, social distancing, home confinement and the fear of contagion have reduced the possibility of romantic encounters thus influencing sexual activity, desire and behavior and, consequently, modifying socio-sexual experiences. The aim of this study is to examine sociosexuality and sociosexual experiences in southern Italians during the COVID-19 pandemic

    The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures

    Get PDF
    Abstract Psychogenic nonepileptic seizures (PNES) are episodes of paroxysmal impairment associated with a range of motor, sensory, and mental manifestations, which perfectly mimic epileptic seizures. Several patterns of neural abnormalities have been described without identifying a definite neurobiological substrate. In this multicenter cross-sectional study, we applied a multivariate classification algorithm on morphological brain imaging metrics to extract reliable biomarkers useful to distinguish patients from controls at an individual level. Twenty-three patients with PNES and 21 demographically matched healthy controls (HC) underwent an extensive neuropsychiatric/neuropsychological and neuroimaging assessment. One hundred and fifty morphological brain metrics were used for training a random forest (RF) machine-learning (ML) algorithm. A typical complex psychopathological construct was observed in PNES. Similarly, univariate neuroimaging analysis revealed widespread neuroanatomical changes affecting patients with PNES. Machine-learning approach, after feature selection, was able to perform an individual classification of PNES from controls with a mean accuracy of 74.5%, revealing that brain regions influencing classification accuracy were mainly localized within the limbic (posterior cingulate and insula) and motor inhibition systems (the right inferior frontal cortex (IFC)). This study provides Class II evidence that the considerable clinical and neurobiological heterogeneity observed in individuals with PNES might be overcome by ML algorithms trained on surface-based magnetic resonance imaging (MRI) data

    Combined cortical thickness and blink reflex recovery cycle to differentiate essential tremor with and without resting tremor

    Get PDF
    ObjectiveTo investigate the performance of structural MRI cortical and subcortical morphometric data combined with blink-reflex recovery cycle (BRrc) values using machine learning (ML) models in distinguishing between essential tremor (ET) with resting tremor (rET) and classic ET.MethodsWe enrolled 47 ET, 43 rET patients and 45 healthy controls (HC). All participants underwent brain 3 T-MRI and BRrc examination at different interstimulus intervals (ISIs, 100–300 msec). MRI data (cortical thickness, volumes, surface area, roughness, mean curvature and subcortical volumes) were extracted using Freesurfer on T1-weighted images. We employed two decision tree-based ML classification algorithms (eXtreme Gradient Boosting [XGBoost] and Random Forest) combining MRI data and BRrc values to differentiate between rET and ET patients.ResultsML models based exclusively on MRI features reached acceptable performance (AUC: 0.85–0.86) in differentiating rET from ET patients and from HC. Similar performances were obtained by ML models based on BRrc data (AUC: 0.81–0.82 in rET vs. ET and AUC: 0.88–0.89 in rET vs. HC). ML models combining imaging data (cortical thickness, surface, roughness, and mean curvature) together with BRrc values showed the highest classification performance in distinguishing between rET and ET patients, reaching AUC of 0.94 ± 0.05. The improvement in classification performances when BRrc data were added to imaging features was confirmed by both ML algorithms.ConclusionThis study highlights the usefulness of adding a simple electrophysiological assessment such as BRrc to MRI cortical morphometric features for accurately distinguishing rET from ET patients, paving the way for a better classification of these ET syndromes

    MRI Asymmetry Index of Hippocampal Subfields Increases Through the Continuum From the Mild Cognitive Impairment to the Alzheimer's Disease

    Get PDF
    Objective: It is well-known that the hippocampus presents significant asymmetry in Alzheimer's disease (AD) and that difference in volumes between left and right exists and varies with disease progression. However, few works investigated whether the asymmetry degree of subfields of hippocampus changes through the continuum from Mild Cognitive Impairment (MCI) to AD. Thus, aim of the present work was to evaluate the Asymmetry Index (AI) of hippocampal substructures as possible MRI biomarkers of Dementia. Moreover, we aimed to assess whether the subfields presented peculiar differences between left and right hemispheres. We also investigated the relationship between the asymmetry magnitude in hippocampal subfields and the decline of verbal memory as assessed by Rey's auditory verbal learning test (RAVLT).Methods: Four-hundred subjects were selected from ADNI, equally divided into healthy controls (HC), AD, stable MCI (sMCI), and progressive MCI (pMCI). The structural baseline T1s were processed with FreeSurfer 6.0 and volumes of whole hippocampus (WH) and 12 subfields were extracted. The AI was calculated as: (|Left-Right|/(Left+Right))*100. ANCOVA was used for evaluating AI differences between diagnoses, while paired t-test was applied for assessing changes between left and right volumes, separately for each group. Partial correlation was performed for exploring relationship between RAVLT summary scores (Immediate, Learning, Forgetting, Percent Forgetting) and hippocampal substructures AI. The statistical threshold was Bonferroni corrected p < 0.05/13 = 0.0038.Results: We found a general trend of increased degree of asymmetry with increasing severity of diagnosis. Indeed, AD presented the higher magnitude of asymmetry compared with HC, sMCI and pMCI, in the WH (AI mean 5.13 ± 4.29 SD) and in each of its twelve subfields. Moreover, we found in AD a significant negative correlation (r = −0.33, p = 0.00065) between the AI of parasubiculum (mean 12.70 ± 9.59 SD) and the RAVLT Learning score (mean 1.70 ± 1.62 SD).Conclusions: Our findings showed that hippocampal subfields AI varies differently among the four groups HC, sMCI, pMCI, and AD. Moreover, we found—for the first time—that hippocampal substructures had different sub-patterns of lateralization compared with the whole hippocampus. Importantly, the severity in learning rate was correlated with pathological high degree of asymmetry in parasubiculum of AD patients

    Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge

    Get PDF
    Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org

    Thrombosis in vasculitis: from pathogenesis to treatment

    Get PDF
    In recent years, the relationship between inflammation and thrombosis has been deeply investigated and it is now clear that immune and coagulation systems are functionally interconnected. Inflammation-induced thrombosis is by now considered a feature not only of autoimmune rheumatic diseases, but also of systemic vasculitides such as Behçet’s syndrome, ANCA-associated vasculitis or giant cells arteritis, especially during active disease. These findings have important consequences in terms of management and treatment. Indeed, Behçet’syndrome requires immunosuppressive agents for vascular involvement rather than anticoagulation or antiplatelet therapy, and it is conceivable that also in ANCA-associated vasculitis or large vessel-vasculitis an aggressive anti-inflammatory treatment during active disease could reduce the risk of thrombotic events in early stages. In this review we discuss thrombosis in vasculitides, especially in Behçet’s syndrome, ANCA-associated vasculitis and large-vessel vasculitis, and provide pathogenetic and clinical clues for the different specialists involved in the care of these patients

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore