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Psychogenic nonepileptic seizures (PNES) are episodes of paroxysmal impairment associated with a range of
motor, sensory, and mental manifestations, which perfectly mimic epileptic seizures. Several patterns of neural
abnormalities have been described without identifying a definite neurobiological substrate. In this multicenter
cross-sectional study, we applied a multivariate classification algorithm onmorphological brain imaging metrics
to extract reliable biomarkers useful to distinguish patients from controls at an individual level.
Twenty-three patients with PNES and 21 demographically matched healthy controls (HC) underwent an exten-
sive neuropsychiatric/neuropsychological and neuroimaging assessment. One hundred and fifty morphological
brain metrics were used for training a random forest (RF) machine-learning (ML) algorithm.
A typical complex psychopathological construct was observed in PNES. Similarly, univariate neuroimaging analysis
revealed widespread neuroanatomical changes affecting patients with PNES. Machine-learning approach, after fea-
ture selection, was able to perform an individual classification of PNES from controls with amean accuracy of 74.5%,
revealing that brain regions influencing classification accuracy were mainly localized within the limbic (posterior
cingulate and insula) and motor inhibition systems (the right inferior frontal cortex (IFC)).
This study provides Class II evidence that the considerable clinical and neurobiological heterogeneity observed in
individuals with PNESmight be overcome byML algorithms trained on surface-basedmagnetic resonance imag-
ing (MRI) data.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Psychogenic nonepileptic seizures (PNES) consist of paroxysmal be-
havioral manifestations resembling epileptic seizures [1,2] that have
been associated with chronic disability and increased risk of morbidity
and mortality [1,2]. Current medical nosology mainly categorizes PNES
as manifestations of conversion/somatoform (DSM 5) or dissociative
disorders (ICD-10), providing no additional insights into the likely neu-
robiological underpinnings of the disorder (DSM 5). Although, video
electroencephalography (vEEG) is the gold-standard diagnostic investi-
gation in PNES, such assessment is considered as not mandatory by
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psychiatrists, is expensive, is unavailable in many centers, and requires
hospitalization. Moreover, PNES, rather than epileptic seizures, occur in
more than 20% of the patients referred to epilepsy centers for refractory
recurrent seizures [2–5]. Because of the above reasons, identification of
reliable biomarkers of this disorder is widely required by both patients
and physicians.

Our group demonstrated that neuroanatomical abnormalities, mainly
involving the motor network, occur in PNES [6]. In the last five years,
several groups have confirmed and extended pathophysiological mech-
anisms including additional pathways, such as limbic and motor sys-
tems. To date, however, several meta-analytic or systematic reviews
have failed to identify definite neurobiological substrates for PNES [7–9].

In recent years, artificial intelligence proved to be a novel effective
approach to automate the analysis of medical data and extract new
combinations of biomarkers useful for early individual diagnosis [10–
14]. Compared to the classical univariate perspective of previous stud-
ies, the multivariate neurobiological heterogeneity detected in patients
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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with PNESmight be used to train a multivariatemachine-learning (ML)
classifier with the aim to predict or classify a specific phenotype or be-
havior. Identifying potential risk factors for PNES would be of primary
importance for planning preventive and therapeutic interventions.

The main purpose of this study was to evaluate the contribution of
different anatomical neuroimaging metrics (cortical thickness, volume,
surface) combined with artificial intelligence for an automated diagno-
sis of PNES. As a secondary objective, we attempted to extract the mul-
tivariate pattern of brain abnormalities that plays a pivotal role in the
pathophysiological mechanisms of PNES.

2. Methods

2.1. Subjects enrolment

Patients with PNES were enrolled from two tertiary epilepsy centers,
one from the south and one from the north of Italy: The Institute of Neu-
rology, UniversityMagna Graecia of Catanzaro (center A) and the Neurol-
ogyUnit of AnnaMeyer Children's Hospital, University of Florence (center
B). The diagnosis of definite PNESwasmadewhen patientswith an indic-
ative clinical history had spontaneous or provoked seizures recordedwith
vEEG, and all attacks in a context of negative ictal EEG recordings were
considered typical of habitual seizures by seizure witnesses [6,15]. Psy-
chogenic nonepileptic seizures were characterized by stereotyped
motor phenomena. All patients enrolled in the study underwent long-
term vEEG monitoring to capture at least two stereotyped spontaneous
or provoked nonepileptic events. Furthermore, the entire groupwas stud-
ied based on a protocol routinely used for patients with epilepsy through
awake and sleep-deprived EEG [6]. Exclusion criteria were as follows: 1)
age b 16 years; 2) inability to communicate with the researcher or to
complete questionnaires because of language difficulties; 3) severe learn-
ing disability or dementia and any other serious neurological or medical
illness; 4) cooccurrence of both a functional disorder and epilepsy; 5) ev-
idence of vascular brain lesions, brain tumor, and/ormarked cortical and/
or subcortical atrophy on magnetic resonance imaging (MRI) scan; 6)
personality disorders assessed by structured clinical interview II (SCID-
II) [16]; and 7) severe depressive symptoms.

Twenty-three patients with PNES fulfilled these criteria and were
enrolled in the study (mean age: 26.22± 12.35 years; 20 females). Ad-
ditionally, 21 consecutive healthy controls (HC),matched for age (mean
age: 28.76± 7.61 years) and sex (15 women) with no previous history
of neurologic or psychiatric disorders, were enrolled from both centers.
All patients and controls provided written informed consent. The study
was approved by local ethics committees at both participating centers
and was conducted in accordance with the Helsinki Declaration.

2.2. Neuropsychiatric and neuropsychological assessment

All patients completed a comprehensive battery of neuropsychiatric
tests [17], administered by an experienced neuropsychologist, lasting
around 50 min and extensively described in Supplementary materials
(S1). The neuropsychiatric examination included the Toronto
Alexithymia Scale (TAS-20) [18], the Hamilton Anxiety Rating Scale
(HAM-A) [19], the Beck Depression Inventory (BDI-II) [20], the Disso-
ciative Experiences Scale (DES) [21], the Traumatic Experience Check-
list [22], and the Somatoform Dissociation Questionnaire-20 (SDQ-20)
[23].

2.3. MRI data acquisition

Imaging data were obtained from two different 3T MRI scanners
(voxel size = 1 × 1 × 1 mm3). Patients with PNES and HC were also
matched by a scanner. The detailed MRI protocol routinely used for pa-
tients with PNES at both institutions was similar, according to guidelines
for epilepsy [6,24]. After visual inspection by expert neuroradiologists,
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images with prominent ghosting or heavy movement artefacts were ex-
cluded. The final dataset included 44 structural MRI scans.

2.4. MRI processing and features extraction

Structural images were preprocessed with the standard FreeSurfer
pipeline (recon-all script) (Massachusetts General Hospital, Harvard
Medical School; http://surfer.nmr.mgh.harvard.edu — version 5.3), as
described elsewhere [25–29]. Automatic parcellation of the cortex into
34 gyral-based regions-of-interest (ROIs) per hemisphere was per-
formed according to the Desikan–Killiany atlas [30]. Thus, for each of
the 68 cortical bilateral ROIs, metrics for thickness (in mm) and surface
area of the pial (inmm2) were used as training features. Moreover, nor-
malized volumes (mm3) of 40 subcortical structureswere also added as
extracted from automatic subcortical segmentation. In conclusion, after
removing metrics of no interest, a total of 167 morphological brain fea-
tures were extracted and analyzed using double statistical approaches:
univariate & multivariate ML analysis.

2.5. Neuroimaging analysis: univariate approach

Statistical methodology consisted of an analysis of covariance
(ANCOVA) used to investigate themain effect of diagnosis on graymat-
ter parameters (cortical thickness, cortical surface area, and subcortical
volume features). Age, sex, total intracranial volume (ICV), and MR
manufacturer were included in the model as covariates of no interest.
All statistical analyses were corrected for multiple comparisons
(Bonferroni's correction) and a p-level of .05 was considered as signifi-
cant. We calculated the Cohen's d as a measure of the effect size that in-
dicates the magnitude of mean differences (using the estimated
marginal means) [31]. Statistical analyses were performed using SPSS
(version 12.0). This analysis wasmade independently frommultivariate
approach in order to evaluate the overall pattern ofmorphological brain
abnormalities associated with the diagnosis of PNES.

2.6. Neuroimaging analysis: multivariate approach

In order to perform a multivariate pattern analysis by means of T1-
weighted structural images, we used a ML algorithm previously imple-
mented by our group in clinical neuroimaging [32]. Generally, ML tech-
niques assess the clinical utility of MRI features, providing a support for
clinicians in diagnosis prediction. To evaluate the prediction power of
morphological variables, we applied the random forest (RF) algorithm
[33], which has already been successfully applied on neuroimaging
data, such as in dementia classification [32]. This algorithm is robust
to overfitting, and it is consideredmore stable than otherML algorithms
in the presence of outliers and in very high-dimensional parameter
spaces [32]. In particular, RF is a collection or ensemble of classification
and regression trees (CART) [34] trained on datasets of the same size as
training set (called bootstraps) and tested on samples that do not in-
clude any particular record from the original (one-third of the total sub-
jects [33]). Once a tree is constructed, a set of bootstraps, which do not
include any particular record from the original dataset [out-of-bag
(OOB) samples], is used as test set. The error rate of the classification
onOOB test sets is an estimation of the generalization error. The concept
of variable importance is assessed by the Gini impurity criterion index,
which is a measure of prediction power of variables, based on the prin-
ciple of impurity reduction [35]. A greater decrease in Gini means that a
particular predictor feature plays a greater role in partitioning the data
into the two classes. Thus, the Gini index can be used to rank the impor-
tance of features for a classification problem [32].

Our analyses were conducted using the R language (version 3.3.2)
and the RF package [36]. A binary classifier was trained by RF on the en-
tire morphological metrics obtained by FreeSurfer, with 10,000 trees in
the forest, as suggested by empirical evidence [37]. Variables were then
ranked according to their mean decrease in Gini, and all the features
lligence to understand the pathophysiological basis of psychogenic
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Table 1
Neuropsychiatric characteristics of patients with PNES.

Patients with PNES (n°23)
Age 26.22 ± 12.35
Sex (n° female) 20/23
Disease Duration (y) 15.6 ± 6.7

Neuropsychiatric features
TAS-20 62.13 ± 7.74a

BDI-II 16.87 ± 13.11a

HAM-A 22.33 ± 7.72a

TEC 3.73 ± 2.89
DES 11.04 ± 9.86
SDQ-20 24.60 ± 11.56a

TAS-20: Toronto Alexithymia Scale. BDI-II: Beck Depression Inventory-II. TEC: Traumatic
Experience Checklist. DES: The Dissociative Experiences Scale. SDQ-20: Somatoform Dis-
sociation Questionnaire-20. Data are given as mean± SD.

a Score overcoming cutoff values.
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with a mean decrease in Gini ≥ 0.24 were selected (feature selection
phase). This threshold was chosen to construct a new classifier with
the lowest OOB error (10,000 trees in the forest). The accuracy of the
new classifier was evaluated as 100 - OOB error. Moreover, in order to
show the stability of the classification, the true positive rate on one of
the training set generated internally by RF was calculated as the ratio
between the number of correctly classified instances and the total num-
ber of instances. In order to evaluate the effect of nuisance variables
such as age, gender, and scanner, we performed analysis including or
excluding those features as main factors to highlight their influence on
multivariate classification performance. For additional information and
for the evaluation of RF performance with respect to other ML algo-
rithms, see the Supplementary materials.

3. Results

3.1. Clinical data

Demographic and clinical data are summarized in Table 1. Psycho-
genic nonepileptic seizure semiology was highly stereotyped in each
patient, mainly featuring convulsive components, such as tonic, clonic,
or bizarre motor manifestations usually involving the upper or lower
limbs bilaterally. Five patients manifested nonmotor events such as pa-
ralysis, or unresponsiveness, or reported sensory feelings. None of the
patients had a family history of psychogenic events. Neurologic exami-
nation was unremarkable in all patients. No interictal or ictal EEG
changes were observed during vEEG. Neuropsychiatric evaluation re-
vealed a typical heterogeneous psychopathological construct character-
ized by high level of pathological somatoform dissociation (SDQ-20),
alexithymia (TAS-20), anxiety (HAMA), and depression (BDI-II).

3.2. Neuroimaging univariate approach

Patients with PNES exhibited significant morphological abnormali-
ties only in cerebral cortical areas, including the bilateral pars
Table 2
Significant results of ANCOVA on morphological features comparing patients with PNES and H

Morphological features HC

Left pars triangularis surface (mm2) 1341.1 ± 190.1
Right pars triangularis surface (mm2) 1493.7 ± 149.1
Right medial orbitofrontal surface (mm2) 1772 ± 203.2
Left caudal middle frontal surface (mm2) 2281.5 ± 296
Left lateral orbitofrontal surface (mm2) 2496.9 ± 308.8
Left posterior cingulate thickness (mm) 2.6 ± 0.1
Left insula surface (mm2) 2054.1 ± 216
Right pars opercularis surface (mm2) 1403.8 ± 188.6
Right precentral surface (mm2) 4611.1 ± 431.1

Data are given as mean± SD.
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triangularis and the right pars opercularis of the inferior frontal cortex
(IFC), the medial and the lateral regions of the orbitofrontal cortex
(OFC), the caudal middle (intermediate) region of the frontal cortex,
the right precentral gyrus, the left posterior cingulate, and the left insula
(Table 2). No significant changes were detected in subcortical regions.

3.3. Neuroimaging multivariate approach

Random forest classifier, trained on all the features, showed a mean
OOB error of 51.3% (mean accuracy = 48.7%), calculated on all the
10,000 test sets. After feature selection, the classifier was trained on
the most important morphological metrics, for a total of 12 (mean de-
crease in Gini ≥ 0.24), showing a mean OOB error of 25.5% (mean accu-
racy= 74.5%) (first two columns of Table 3). The true positive rate on
training set without feature selection was of 52%, while with only the
most predictive variables, we reached 75% of accuracy.

The analysis of the variable importance (Fig. 1A) showed that ana-
tomical metrics influencing the classification of PNES with respect to
HCmainly included the right pars triangularis area, left posterior cingu-
late thickness, and rightmedial orbitofrontal area. Additional significant
morphological features, useful for PNES discrimination, were detected
in the left caudal middle frontal area, right lateral orbitofrontal area,
left transverse temporal thickness, right parahippocampal area, left
pars triangularis area, right pars opercularis, right transverse temporal
thickness, left putamen, and right precentral area (Fig. 1B). The same re-
sults were obtained including nuisance variables (such as age, gender,
and scanner) as main factor in multivariate analysis, demonstrating
that the influence of demographical features on classification perfor-
mance was negligible.

4. Discussion

The pathophysiologicalmechanisms underlying PNES are still amat-
ter of debate. In the last few years, several review and meta-analytic
studies have tried to summarize the large amount of evidence gener-
ated from behavioral and neuroimaging realms, providing different
key lectures. In spite of a number of important pathological features
having been reported that highlight neurobiological differences in the
PNES brain, their subsequent translation into clinical practice has not
happened. The implementation of multivariate automatic classification
approaches might represent an essential step towards improving clini-
cal diagnosis. Our multivariate approach allows reaching optimal accu-
racy for individual discrimination between patients with PNES and
controls, detecting neural changes in widespread neural systems and
highlighting the involvement of the limbic and motor inhibition
pathways.

Clinical histories of patients with PNES feature differences in behav-
ioral seizure manifestations, life experiences, personal histories of
trauma, and overall high levels of psychiatric comorbidity. All these fac-
tors contribute to thewidely heterogeneous nature of this yetmedically
unexplained neurological disorder, where cognitive-behavioral therapy
C.

Patients with PNES p-Value Effect size (Cohen's d)

1190.1 ± 192.6 .012 0.79
1322.8 ± 178 .001 1.04
1597.8 ± 161.9 .003 0.95
2027.1 ± 357.6 .014 0.77
2291.4 ± 320 .036 0.65
2.7 ± 0.2 .012 0.77
1888.2 ± 259.5 .027 0.70
1251.5 ± 239.2 .025 0.71
4315.2 ± 414.9 .025 0.70
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Table 3
Performance of RF classifiers, trained on all FreeSurfer features (without feature selection) and on themost important variables
(with feature selection, mean decrease in Gini ≥ 0.24). The confusion matrix of the classification of one-random training set is
shown in the last two columns (right side). Abbreviations: RF= random forest. OOB= out-of-bag.

RF Classifier OOB error 
Accuracy Confusion matrix 

[Random training set] 

without feature 

selection 

mean = 51.3% 

(min=36.4, 

max=56.8) 

mean = 48.7% 

(min=63.6, 

max=43.2)

Prediction PNES CTRL 52.3% 

PNES 11 12

CTRL 9 12

with feature 

selection 

mean = 25.5% 

(min=25.0, 

max=50.0) 

mean = 74.5% 

(min=75.0, 

max=50.0)

Reference True positive rate 

Reference True positive rate 
Prediction PNES CTRL 75.0% 

PNES 18 5

CTRL 6 15
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is the most effective treatment useful for reducing seizure frequency
[38]. Most importantly, clinical manifestations in these patients are fre-
quently mistaken as epileptic seizures and treated with multiple drugs,
which considerably delays a proper treatment [5]. For this reason, iden-
tifying reliable biomarkers of this disorder is highly needed. In the last
two decades, researchers have investigated the neurobiological corre-
lates of PNES usingdifferent advancedneuroimagingmethods [9]. Over-
all, largely contradictory findings have been reported, mainly
concerning structural MRI data. Morphological studies of the gray mat-
ter pointed to neural losses in widespread brain regions involving the
motor, premotor [6], and limbic systems [39]. Structural connectivity
studies have provided proof-of-concepts that nonepileptic seizures
characterizing PNES semiology may be associated with damages of fi-
bers connecting the limbic system with prefrontal areas [40,41]. This
first evidence, however, was limited by the lack of significant associa-
tion with clinical data. As suggested by some authors [42], given high
rates of psychiatric comorbidity in PNES, it is impossible to infer if the
above structural brain abnormalities are specifically associated with
Fig. 1.Machine-learning results and variable importance analysis. (A) Variable importance plo
morphological features extracted by FreeSurfer for individual classification between patients w
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seizure attacks or coexisting psychopathologies (such as anxiety, de-
pression, or dissociative disorders). Functional MRI studies have helped
in clarifying the pathophysiological mechanisms underlying
nonepileptic seizures. Some researchers have reported that connectivity
strength in resting-state networks (underlying executive control, sen-
sory-motor, and default-mode) was positively correlated with dissocia-
tion scores [43–45]. Similar clinical-imaging relationships were
described in a study [46], in which altered communication in patients
with PNES were observed between regions involved in emotional elab-
oration (insula) andmotor planning (precentral sulcus), as a function of
dissociation scores.

Our results confirm the considerable evidence already gathered sug-
gesting that regions belonging to the primary motor system (putamen;
the precentral cortex), motor control (IFC), and limbic network (insula,
cingulate cortex, and OFC) are involved in pathophysiological mecha-
nisms of PNES. However, the ML approach allowed us to narrow down
our interest on those areas primary involved in clinical expression of
PNES. Indeed, an intriguing novelty of our contribution is the use of an
t, according to the Gini impurity criterion index; (B) 3D rendering of the most predictive
ith PNES and controls.
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artificial intelligence technique to evaluate the selective influence of an-
atomical abnormalities on PNES diagnosis by a multivariate statistical
approach, with around 75% accuracy. In particular, the advantage of
ML application to neuroimaging data is dual: firstly, it allows character-
ization at the single subject level and is potentially useful for translation
to clinical practice; and secondly, being intrinsically multivariate, it is
sensitive both to widely distributed and subtle brain effects, which
would not be detectable using traditional univariate methods focusing
on macroscopic group-wide differences. Therefore, in this context, ML
techniques offer the possibility to assess the clinical usefulness of MRI
features for diagnostic purposes in clinical practice.

Analysis of the variable importance (the Gini index) highlighted IFC
involvement, the posterior cingulate cortex, andmedial OFC asmore re-
liablemarkers to distinguish patients with PNES from controls at the in-
dividual level. The IFC is the main brain region involved in the motor
control ability [47]. Lesions within this region have been reported in
compulsive–impulsive disorders, Tourette syndrome, and Parkinson's
diseasewith levodopa-induced dyskinesias [29]. The posterior cingulate
cortex is one of the three brain regions participating in the default mode
network, mainly involved in the regulation processes associated with
self-awareness/consciousness of one-self [48,49]. Patients with PNES
exhibit increased functional connectivity [46] and reduced cortical
thickness [39] within this region. Finally, abnormality of the OFC is
one of themost consistentfindings commonly described by neuroimag-
ing studies [3,39,45]. Increased functional connectivity [45], thinning
[6], as well as reduced cortical depth [39] within the OFC have all been
described. The most prominent hypothesis about pathophysiological
mechanisms underlying PNES symptomatology supports the view of
the “dissociative experiences” [39,50], caused by altered communica-
tion between brain regions involved in emotion regulation (cingulate
cortex, OFC) and frontal regions involved in inhibitory control (IFC).
This abnormal mechanism could lead to disruption in information pro-
cessing and aberrant sensorimotor interactions beyond the conscious
control of the individual, resulting in nonepileptic, seizure-like episodes
[46,51,52]. These findings have potential implications for treatment,
particularly psychological therapies that may be more effective than
medication and particularly cognitive-behavior therapy, which proved
to be the most effective in reducing seizure frequency in patients with
PNES [5,38].

Some possible limitations of our data need to be addressed. The
number of subjects in this study was relatively small for ML approach,
but the RF algorithm is known to be robust to overfitting and very stable
with small sample size andhigh-dimensional parameter spaces [34]. Al-
though the accuracywe reached is lowerwith respect toML application
to other neurological disorders such as mild cognitive impairment [32],
Alzheimer's disease [13], Parkinson's disease [11,14], and schizophrenia
[53], in view of the heterogeneity of PNES, our first attempt on usingML
is very promising. Another limitation could be the lack of additional
pathological groups matching similar psychopathological or neurologi-
cal pictures revealed in patients with PNES. The application of ML ap-
proach to distinguish patients with PNES from patients with major
depression or from patients with epilepsy would be a critical advantage
for translating this method in clinical practice. Finally, as for previous
neuroimaging studies, we cannot infer causal relationship between
neurobiological signs and PNES symptoms. Additional longitudinal
and multicentric studies will be useful to monitor the progressive in-
volvement of the limbic and frontal circuits in this pathology and to rec-
oncile neuroimaging findings with clinical phenotypes.

Author contributions

Dr. Vasta took part in the analyses and interpretation of the data, sta-
tistical analysis, drafting/revising themanuscript, and the final approval
of the version to be published. Dr. Cerasa took part in the data collection
and interpretation, drafting/revising the manuscript, and the final ap-
proval of the version to be published. Dr. Sarica took part in the data
Please cite this article as: Vasta R, et al, The application of artificial inte
nonepileptic seizures, Epilepsy Behav (2018), https://doi.org/10.1016/j.ye
collection, analysis, and interpretation; drafting/revising the manu-
script; and the final approval of the version to be published. Dr. Bartolini
took part in the data collection, analysis, and interpretation; drafting/re-
vising the manuscript; and the final approval of the version to be pub-
lished. Dr. Martino took part in the acquisition and analysis of data
and the final approval of the version to be published. Prof Quattrone
took part in the revision of themanuscript and final approval of the ver-
sion to be published. Prof Gambardella took part in drafting/revising the
manuscript and the final approval of the version to be published. Prof
Guerrini took part in the study concept and design; acquisition, analysis,
and interpretation of the data; drafting/revising the manuscript for im-
portant intellectual content; and the final approval of the version to be
published. Prof Labate took part in the study concept and design; acqui-
sition, analysis, and interpretation of the data; drafting/revising the
manuscript for important intellectual content; and the final approval
of the version to be published.

Declaration of interests

All authors report no disclosures.

Conflict of interest

The authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Funding

Authors have no funding to declare.

Acknowledgments

We thank the patients for their participation to this study.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.yebeh.2018.09.008.

References

[1] Lesser RP. Psychogenic seizures. Neurology 1996;46:1499–507.
[2] Krumholz A. Nonepileptic seizures: diagnosis andmanagement. Neurology 1999;53:

S76–83.
[3] Bowman ES, Markand ON. Psychodynamics and psychiatric diagnoses of

pseudoseizure subjects. Am J Psychiatry 1996;153:57–63.
[4] Benbadis SR. Psychogenic nonepileptic “seizures” or “attacks”? It's not just seman-

tics: attacks. Neurology 2010;75:84–6.
[5] Bruni A, Martino I, Borzì G, Gambardella A, De Fazio P, Labate A. The mystery of un-

explained traumatic sudden falls. A clinical case that adds a new feasible cause.
Neurol Sci 2017;38:1115–7.

[6] Labate A, Cerasa A,MulaM,Mumoli L, Gioia MC, Aguglia U, et al. Neuroanatomic cor-
relates of psychogenic nonepileptic seizures: a cortical thickness and VBM study.
Epilepsia 2012;53:377–85.

[7] Asadi-Pooya AA. Neurobiological origin of psychogenic nonepileptic seizures: a re-
view of imaging studies. Epilepsy Behav 2015;52(Pt A):256–9. https://doi.org/10.
1016/j.yebeh.2015.09.020 [Epub 2015 Nov 6].

[8] Sundararajan T, Tesar GE, Jimenez XF. Biomarkers in the diagnosis and study of psy-
chogenic nonepileptic seizures: a systematic review. Seizure 2016;35:11–22.
https://doi.org/10.1016/j.seizure.2015.12.011 [Epub 2015 Dec 31].

[9] Mcsweeney M, Reuber M, Levita L. Neuroimaging studies in patients with psycho-
genic non-epileptic seizures: a systematic meta-review. NeuroImage 2017;16:
210–21.

[10] Segovia F, Gorriz JM, Ramirez J, Alvarez I, Jimenez-Hoyuela JM, Ortega SJ. Improved
parkinsonism diagnosis using a partial least squares based approach. Med Phys
2012;39(7):4395–403. https://doi.org/10.1118/1.4730289.

[11] Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. Ma-
chine learning on brain MRI data for differential diagnosis of Parkinson's disease
and progressive supranuclear palsy. J Neurosci Methods 2014;222:230–7.

[12] Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, et al.
Predicting brain age with deep learning from raw imaging data results in a reliable
lligence to understand the pathophysiological basis of psychogenic
beh.2018.09.008

https://doi.org/10.1016/j.yebeh.2018.09.008
https://doi.org/10.1016/j.yebeh.2018.09.008
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0005
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0010
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0010
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0015
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0015
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0020
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0020
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0025
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0025
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0025
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0030
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0030
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0030
https://doi.org/10.1016/j.yebeh.2015.09.020
https://doi.org/10.1016/j.yebeh.2015.09.020
https://doi.org/10.1016/j.seizure.2015.12.011
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0045
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0045
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0045
https://doi.org/10.1118/1.4730289
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0055
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0055
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0055
https://doi.org/10.1016/j.yebeh.2018.09.008


6 R. Vasta et al. / Epilepsy & Behavior xxx (xxxx) xxx–xxx
and heritable biomarker. NeuroImage 2017;163:115–24. https://doi.org/10.1016/j.
neuroimage.2017.07.059 [Epub 2017 Jul 29].

[13] Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on neuroimag-
ing-based classification studies and associated feature extraction methods for
Alzheimer's disease and its prodromal stages. NeuroImage 2017;155:530–48.
https://doi.org/10.1016/j.neuroimage.2017.03.057 [Epub 2017 Apr 13].

[14] Amoroso N, La Rocca M, Monaco A, Bellotti R, Tangaro S. Complex networks reveal
early MRI markers of Parkinson's disease. Med Image Anal 2018;48:12–24. https://
doi.org/10.1016/j.media.2018.05.004 [Epub 2018 May 17].

[15] LancmanME, Asconapè JJ, CravenWJ, Howard G, Penry JK. Predictive value of induc-
tion of psychogenic seizures by suggestion. Ann Neurol 1994;35:359–61.

[16] First MB, Gibbon M, Spitzer RL, Williams JBW, Benjamin LS. Structured clinical inter-
view for DSM-IV axis II personality disorders. (SCID-II). Washington D.C.: American
Psychiatric Press; 1997

[17] Martino I, Bruni A, Labate A, Vasta R, Cerasa A, Borzì G, et al. Psychopathological con-
stellation in patients with PNES: a new hypothesis. Epilepsy Behav 2018;78:
297–301. https://doi.org/10.1016/j.yebeh.2017.09.025 [Epub 2017 Oct 29].

[18] Bagby RM, Taylor GJ, Parker JD. The twenty-item Toronto Alexithymia Scale-II: con-
vergent. Discriminant and concurrent validity. J Psychosom Res 1994;38:33–40.

[19] Balon R. Rating scale for anxiety/anxiety disorders. Curr Psychiatr Ther 2007;Rep. 9:
271–7.

[20] Beck AT, Steer RA, Brown GK. Manual for the Beck Depression Inventory-II. San
Antonio (TX): Psychological Corporation; 1996.

[21] Carlos EB, Putnam FW. The dissociative experiences scale (DES-II). Psychoanal Inq
2000;20:361–6.

[22] Nijenhuis ER, Van der Hart O, Kruger K. The psychometric characteristics of the trau-
matic experiences checklist (TEC): first findings among psychiatric outpatients. Clin
Psychol Psychother 2002;9:200–10.

[23] Nijenhuis ER, Spinhoven P, Van Dyck R, Van der Hart O, Vanderline J. The develop-
ment and the psychometric characteristics of the Somatoform Dissociation Ques-
tionnaire (SDQ-20). J Nerv Ment Dis 1996;184:688–94.

[24] Labate A, Aguglia U, Tripepi G, Mumoli L, Ferlazzo E, Baggetta R, et al. Long-term out-
come of mildmesial temporal lobe epilepsy: a prospective longitudinal cohort study.
Neurology 2016;86:1904–10.

[25] Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and
surface reconstruction. NeuroImage 1999;9:179–94.

[26] Fischl B, Salat DH, Busa E, AlbertM, DieterichM, Haselgrove C, et al. Whole brain seg-
mentation: automated labeling of neuroanatomical structures in the human brain.
Neuron 2002;33:341–55.

[27] Fischl B. FreeSurfer. NeuroImage 2012;62:774–81.
[28] Labate A, Cerasa A, Cherubini A, Aguglia U, Quattrone A, Gambardella A. Advanced

MRI morphologic study shows no atrophy in healthy individuals with hippocampal
hyperintensity. AJNR Am J Neuroradiol 2013;34(8):1585–8.

[29] Cerasa A, Fasano A, Morgante F, Koch G, Quattrone A. Maladaptive plasticity in levo-
dopa-induced dyskinesias and tardive dyskinesias: old and new insights on the ef-
fects of dopamine receptor pharmacology. Front Neurol 2014;9:5–49.

[30] Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An auto-
mated labeling system for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. NeuroImage 2006;31(3):968–80 [Epub 2006
Mar 10].

[31] Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale (NJ):
Lawrence EarlbaumAssociates; 1998.

[32] Sarica A, Cerasa A, Quattrone A. Random forest algorithm for the classification of
neuroimaging data in Alzheimer's disease: a systematic review. Front Aging
Neurosci 2017;9:329.

[33] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[34] Breiman L, Friedman JH, Olshen RA, Stone CI. Classification and regression trees. Bel-

mont (Calif.): Wadsworth; 1984.
Please cite this article as: Vasta R, et al, The application of artificial inte
nonepileptic seizures, Epilepsy Behav (2018), https://doi.org/10.1016/j.ye
[35] Strobl C, Boulesteix AL, Augustin T. Unbiased split selection for classification trees
based on the Gini index. Comput Stat Data Anal 2007;52:483–501.

[36] Liaw A, Wiener M. Classification and regression by random forest. vol. 2R News;
2002; 18–22.

[37] Oshiro TM, Perez PS, Baranauskas JA. How many trees in a random forest? Interna-
tional workshop onmachine learning and data mining in pattern recognition. Berlin,
Heidelberg: Springer; 2012. p. 154–68.

[38] Goldstein LH, Chalder T, Chigwedere C, Khondoker MR, Moriarty J, Toone BK, et al.
Cognitive-behavioral therapy for psychogenic nonepileptic seizures: a pilot RCT. Neu-
rology 2010;74(24):1986–94. https://doi.org/10.1212/WNL.0b013e3181e39658.

[39] Ristić AJ, DakovićM, KerrM, KovačevićM, Parojčić A, Sokić D. Cortical thickness, sur-
face area and folding in patients with psychogenic nonepileptic seizures. Epilepsy
Res 2015;112:84–91. https://doi.org/10.1016/j.eplepsyres.2015.02.015.

[40] Hernando KA, Szaflarski JP, Ver Hoef LW, Lee S, Allendorfe JB. Uncinate fasciculus
connectivity in patients with psychogenic nonepileptic seizures: a preliminary diffu-
sion tensor tractography study. Epilepsy Behav 2015;45:68–73. https://doi.org/10.
1016/j.yebeh.2015.02.022.

[41] Lee S, Allendorfer JB, Gaston TE, Griffis JC, Hernando KA, Knowlton RC, et al. White
matter diffusion abnormalities in patients with psychogenic non-epileptic seizures.
Brain Res 1620;2015:169–76. https://doi.org/10.1016/j.brainres.2015.04.050.

[42] Diprose W, Sundram F, Menkes DB. Psychiatric comorbidity in psychogenic
nonepileptic seizures compared with epilepsy. Epilepsy Behav 2016;56:123–30.
https://doi.org/10.1016/j.yebeh.2015.12.037.

[43] Ding JR, An D, Liao W, Li J, Wu GR, Xu Q, et al. Altered functional and structural con-
nectivity networks in psychogenic non-epileptic seizures. PLoS One 2013;8(5):
e63850. https://doi.org/10.1371/journal.pone.0063850.

[44] Ding J, An D, Liao W, Wu G, Xu Q, Zhou D, et al. Abnormal functional connectivity
density in psychogenic non-epileptic seizures. Epilepsy Res 2014;108(7):1184–94.
https://doi.org/10.1016/j.eplepsyres.2014.05.006.

[45] van der Kruijs SJ, Jagannathan SR, Bodde, Besseling RM, Lazeron RH, Vonck KE, et al.
Resting-state networks and dissociation in psychogenic non-epileptic seizures. J
Psychiatr Res 2014;54:126–33. https://doi.org/10.1016/j.jpsychires.2014.03.010.

[46] van der Kruijs SJ, Bodde NM, Vaessen MJ, Lazeron RH, Vonck K, Boon P, et al. Func-
tional connectivity of dissociation in patients with psychogenic non-epileptic sei-
zures. J Neurol Neurosurg Psychiatry 2012;83:239–47. https://doi.org/10.1136/
jnnp-2011-300776.

[47] Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex.
Trends Cogn Sci 2004;8(4):170–7.

[48] Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-
referential mental activity: relation to a default mode of brain function. Proc Natl
Acad Sci 2001;98(7):4259–64. https://doi.org/10.1073/pnas.071043098.

[49] Schneider F, Bermpohl F, Heinzel A, Rotte M, Walter M, Tempelmann C, et al. The
resting brain and our self: self-relatedness modulates resting state neural activity
in cortical midline structures. Neuroscience 2008;157(1):120–31. https://doi.org/
10.1016/j.neuroscience.2008.08.014.

[50] Nijenhuis ER, Van der Hart O. Dissociation in trauma: a new definition and compar-
ison with previous formulations. J Trauma Dissociation 2011;12(4):416–45. https://
doi.org/10.1080/15299732.2011.570592.

[51] Li R, Liu K, Ma X, Li Z, Duan X, An D, et al. Altered functional connectivity patterns of
the insular subregions in psychogenic nonepileptic seizures. Brain Topogr 2014;28
(4):636–45. https://doi.org/10.1007/s10548-014-0413-3.

[52] Li R, Li Y, An D, Gong Q, Zhou D, Chen H. Altered regional activity and inter-regional
functional connectivity in psychogenic non-epileptic seizures. Sci Rep 2015;5.
https://doi.org/10.1038/srep11635.

[53] Arbabshirani MR, Kiehl KA, Pearlson GD, Calhoun VD. Classification of schizophrenia
patients based on resting-state functional network connectivity. Front Neurosci
2013;7:133. https://doi.org/10.3389/fnins.2013.00133 [eCollection 2013].
lligence to understand the pathophysiological basis of psychogenic
beh.2018.09.008

https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neuroimage.2017.03.057
https://doi.org/10.1016/j.media.2018.05.004
https://doi.org/10.1016/j.media.2018.05.004
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0075
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0075
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0080
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0080
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0080
https://doi.org/10.1016/j.yebeh.2017.09.025
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0090
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0090
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0095
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0095
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0100
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0100
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0105
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0105
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0110
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0110
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0110
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0115
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0115
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0115
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0120
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0120
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0120
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0125
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0125
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0130
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0130
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0130
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0135
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0140
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0140
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0140
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0145
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0145
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0145
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0150
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0150
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0150
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0150
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0155
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0155
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0160
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0160
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0160
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0165
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0170
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0170
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0175
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0175
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0180
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0180
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0185
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0185
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0185
https://doi.org/10.1212/WNL.0b013e3181e39658
https://doi.org/10.1016/j.eplepsyres.2015.02.015
https://doi.org/10.1016/j.yebeh.2015.02.022
https://doi.org/10.1016/j.yebeh.2015.02.022
https://doi.org/10.1016/j.brainres.2015.04.050
https://doi.org/10.1016/j.yebeh.2015.12.037
https://doi.org/10.1371/journal.pone.0063850
https://doi.org/10.1016/j.eplepsyres.2014.05.006
https://doi.org/10.1016/j.jpsychires.2014.03.010
https://doi.org/10.1136/jnnp-2011-300776
https://doi.org/10.1136/jnnp-2011-300776
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0235
http://refhub.elsevier.com/S1525-5050(18)30572-9/rf0235
https://doi.org/10.1073/pnas.071043098
https://doi.org/10.1016/j.neuroscience.2008.08.014
https://doi.org/10.1016/j.neuroscience.2008.08.014
https://doi.org/10.1080/15299732.2011.570592
https://doi.org/10.1080/15299732.2011.570592
https://doi.org/10.1007/s10548-014-0413-3
https://doi.org/10.1038/srep11635
https://doi.org/10.3389/fnins.2013.00133
https://doi.org/10.1016/j.yebeh.2018.09.008

	The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures
	1. Introduction
	2. Methods
	2.1. Subjects enrolment
	2.2. Neuropsychiatric and neuropsychological assessment
	2.3. MRI data acquisition
	2.4. MRI processing and features extraction
	2.5. Neuroimaging analysis: univariate approach
	2.6. Neuroimaging analysis: multivariate approach

	3. Results
	3.1. Clinical data
	3.2. Neuroimaging univariate approach
	3.3. Neuroimaging multivariate approach

	4. Discussion
	Author contributions
	Declaration of interests
	Conflict of interest
	Funding
	Acknowledgments
	Appendix A. Supplementary material
	References




