63 research outputs found
Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice.
Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin\u27s-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model
The Empirical and Radiative Transfer Hybrid (EaRTH) Disk Model: Merging Analyses of Protoplanetary Dust Disk Mineralogy and Structure
Our understanding of how exoplanets form and evolve relies on analyses of
both the mineralogy of protoplanetary disks and their detailed structures;
however, these key complementary aspects of disks are usually studied
separately. We present initial results from a hybrid model that combines the
empirical characterization of the mineralogy of a disk, as determined from its
mid-infrared spectral features, with the MCFOST radiative transfer disk model,
a combination we call the EaRTH Disk Model. With the results of the mineralogy
detection serving as input to the radiative transfer model, we generate
mid-infrared spectral energy distributions (SEDs) that reflect both the
mineralogical and structural parameters of the corresponding disk. Initial fits
of the SED output by the resulting integrated model to Spitzer Space T elescope
mid-infrared (IRS) spectra of the protoplanetary disk orbiting the nearby T
Tauri star MP Mus demonstrate the potential advantages of this approach by
revealing details like the dominance of micron-sized olivine and micron-sized
forsterite in this dusty disk. The simultaneous insight into disk composition
and structure provided by the EaRTH Disk methodology should be directly
applicable to the interpretation of mid-infrared spectra of protoplanetary
disks that will be produced by the James Webb Space Telescope.Comment: Accepted for publication in ApJ, 38 pages, 11 figures, 6 table
Imaging of I Zw 18 by JWST: II. Spatially resolved star formation history
The blue compact dwarf galaxy I Zw 18 is one of the most metal-poor () star-forming galaxies in the local Universe. Its evolutionary
status has sparked debate within the astronomical community. We aim to
investigate the stellar populations of I Zw 18 in the near-IR using
JWST/NIRCam's high spatial resolution and sensitivity. Additionally, we aim to
derive the galaxy's spatially resolved star formation history (SFH) over the
last 1 Gyr and provide constraints for older epochs. We used DOLPHOT to measure
positions and fluxes of point sources in the F115W and F200W filters' images of
I Zw 18. To derive I Zw 18's SFH, we applied the color-magnitude diagram (CMD)
fitting technique SFERA 2.0, using two independent sets of stellar models. Our
analysis reveals three main stellar populations: one younger than Myr,
mainly in the northwest star-forming (SF) region; an intermediate-age
population ( Myr) in the southeast SF region; and a red and
faint population linked to the underlying halo, older than 1 Gyr and possibly
as old as 13.8 Gyr. The main body of the galaxy shows a very low star formation
rate (SFR) of between 1 and 13.8 Gyr
ago. In the last billion years, I Zw 18 shows increasing SF, with strong bursts
around and Myr ago. Component C mirrors the main body's
evolution but with lower SFRs. Our findings confirm that I Zw 18 contains stars
of all ages, indicating it is not a young galaxy but has an old stellar halo,
similar to other BCDs. The low SF activity over the past billion years supports
the "slow cooking" dwarf scenario, explaining its low metal content. Currently,
the galaxy is undergoing its strongest SF episode () mainly in the northwest region, likely due to a recent
gravitational interaction with Component C.Comment: 14 pages, 11 figures, accepted for publications in Astronomy &
Astrophysics (section "4. Extragalactic astronomy"
JWST MIRI flight performance: The Medium-Resolution Spectrometer
The Medium-Resolution Spectrometer (MRS) provides one of the four operating
modes of the Mid-Infrared Instrument (MIRI) on board the James Webb Space
Telescope (JWST). The MRS is an integral field spectrometer, measuring the
spatial and spectral distributions of light across the 5-28 wavelength
range with a spectral resolving power between 3700-1300. We present the MRS's
optical, spectral, and spectro-photometric performance, as achieved in flight,
and we report on the effects that limit the instrument's ultimate sensitivity.
The MRS flight performance has been quantified using observations of stars,
planetary nebulae, and planets in our Solar System. The precision and accuracy
of this calibration was checked against celestial calibrators with well-known
flux levels and spectral features. We find that the MRS geometric calibration
has a distortion solution accuracy relative to the commanded position of 8 mas
at 5 and 23 mas at 28 . The wavelength calibration is accurate
to within 9 km/sec at 5 and 27 km/sec at 28 . The uncertainty in
the absolute spectro-photometric calibration accuracy was estimated at 5.6 +-
0.7 %. The MIRI calibration pipeline is able to suppress the amplitude of
spectral fringes to below 1.5 % for both extended and point sources across the
entire wavelength range. The MRS point spread function (PSF) is 60 % broader
than the diffraction limit along its long axis at 5 and is 15 % broader
at 28 . The MRS flight performance is found to be better than prelaunch
expectations. The MRS is one of the most subscribed observing modes of JWST and
is yielding many high-profile publications. It is currently humanity's most
powerful instrument for measuring the mid-infrared spectra of celestial sources
and is expected to continue as such for many years to come.Comment: 16 pages, 21 figure
The JWST Early-Release Science Program for Direct Observations of Exoplanetary Systems Ii: A 1 To 20 Μm Spectrum of the Planetary-Mass Companion Vhs 1256-1257 B
We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a (∼8″, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST\u27s NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20 μm at resolutions of ∼1000-3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems: Best Practices for Data Collection in Cycle 2 and Beyond
We present a set of recommended best practices for JWST data collection for
members of the community focussed on the direct imaging and spectroscopy of
exoplanetary systems. These findings and recommendations are based on the early
analysis of the JWST Early Release Science Program 1386, "High-Contrast Imaging
of Exoplanets and Exoplanetary Systems with JWST." Our goal is for this
information to be useful for observers in preparation of JWST proposals for
Cycle 2 and beyond. In addition to compiling a set of best practices from our
ERS program, in a few cases we also draw on the expertise gained within the
instrument commissioning programs, as well as include a handful of data
processing best practices. We anticipate that this document will be regularly
updated and resubmitted to arXiv.org to ensure that we have distributed our
knowledge of best-practices for data collection as widely and efficiently as
possible.Comment: Not yet submitted for publication. Intended only to be a community
resource for JWST Cycle 2 proposal
Histone H1 Depletion Impairs Embryonic Stem Cell Differentiation
Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems V: Do Self-Consistent Atmospheric Models Represent JWST Spectra? A Showcase With VHS 1256 b
The unprecedented medium-resolution (R~1500-3500) near- and mid-infrared
(1-18um) spectrum provided by JWST for the young (140+/-20Myr) low-mass
(12-20MJup) L-T transition (L7) companion VHS1256b gives access to a catalogue
of molecular absorptions. In this study, we present a comprehensive analysis of
this dataset utilizing a forward modelling approach, applying our Bayesian
framework, ForMoSA. We explore five distinct atmospheric models to assess their
performance in estimating key atmospheric parameters: Teff, log(g), [M/H], C/O,
gamma, fsed, and R. Our findings reveal that each parameter's estimate is
significantly influenced by factors such as the wavelength range considered and
the model chosen for the fit. This is attributed to systematic errors in the
models and their challenges in accurately replicating the complex atmospheric
structure of VHS1256b, notably the complexity of its clouds and dust
distribution. To propagate the impact of these systematic uncertainties on our
atmospheric property estimates, we introduce innovative fitting methodologies
based on independent fits performed on different spectral windows. We finally
derived a Teff consistent with the spectral type of the target, considering its
young age, which is confirmed by our estimate of log(g). Despite the
exceptional data quality, attaining robust estimates for chemical abundances
[M/H] and C/O, often employed as indicators of formation history, remains
challenging. Nevertheless, the pioneering case of JWST's data for VHS1256b has
paved the way for future acquisitions of substellar spectra that will be
systematically analyzed to directly compare the properties of these objects and
correct the systematics in the models.Comment: 32 pages, 16 figures, 6 tables, 2 appendice
The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned
We present a performance analysis for the aperture masking interferometry
(AMI) mode on board the James Webb Space Telescope Near Infrared Imager and
Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables,
AMI accesses inner working angles down to and even within the classical
diffraction limit. The scientific potential of this mode has recently been
demonstrated by the Early Release Science (ERS) 1386 program with a deep search
for close-in companions in the HIP 65426 exoplanetary system. As part of ERS
1386, we use the same dataset to explore the random, static, and calibration
errors of NIRISS AMI observables. We compare the observed noise properties and
achievable contrast to theoretical predictions. We explore possible sources of
calibration errors, and show that differences in charge migration between the
observations of HIP 65426 and point-spread function calibration stars can
account for the achieved contrast curves. Lastly, we use self-calibration tests
to demonstrate that with adequate calibration, NIRISS AMI can reach contrast
levels of mag. These tests lead us to observation planning
recommendations and strongly motivate future studies aimed at producing
sophisticated calibration strategies taking these systematic effects into
account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI,
with sensitivity to significantly colder, lower mass exoplanets than
ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal
The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at
We present aperture masking interferometry (AMI) observations of the star HIP
65426 at as a part of the \textit{JWST} Direct Imaging Early
Release Science (ERS) program obtained using the Near Infrared Imager and
Slitless Spectrograph (NIRISS) instrument. This mode provides access to very
small inner working angles (even separations slightly below the Michelson limit
of for an interferometer), which are inaccessible with the
classical inner working angles of the \textit{JWST} coronagraphs. When combined
with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the
potential to probe a new portion of parameter space across a wide array of
astronomical observations. Using this mode, we are able to achieve a contrast
of \,mag relative to the host star at a separation
of {\sim}0.07\arcsec but detect no additional companions interior to the
known companion HIP\,65426\,b. Our observations thus rule out companions more
massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations
from HIP\,65426, a region out of reach of ground or
space-based coronagraphic imaging. These observations confirm that the AMI mode
on \textit{JWST} is sensitive to planetary mass companions orbiting at the
water frost line, even for more distant stars at 100\,pc. This result
will allow the planning and successful execution of future observations to
probe the inner regions of nearby stellar systems, opening essentially
unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter
- …
