1,823 research outputs found

    The astroclimatological comparison of the Paranal Observatory and El Roque de Los Muchachos Observatory

    Full text link
    The new extremely large telescope projects need accurate evaluation of the candidate sites. In this paper we present the astroclimatological comparison between the Paranal Observatory, located on the coast of the Atacama Desert (Chile), and the Observatorio del Roque de Los Muchachos (ORM), located in La Palma (Canary Islands). We apply a statistical analysis using long term databases from Paranal and Carlsberg Meridian Telescope (CAMC) weather stations. Significant differences between the two analyzed sites have been found.Comment: Accepted for publication in MNRAS. 11 pages, 12 figures, 12 table

    The mystery of the 'Kite' radio source in Abell 2626: insights from new Chandra observations

    Get PDF
    We present the results of a new Chandra study of the galaxy cluster A2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual AGNs inside the cD galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to get more insights into their origin. We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the 2D distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. We studied the X-ray SB and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be most visible at very low radio frequencies.Comment: 7 pages, 7 figures. Accepted for publication on A&

    L-H transition dynamics in fluid turbulence simulations with neoclassical force balance

    Get PDF
    Spontaneous transport barrier generation at the edge of a magnetically confined plasma is investigated. To this end, a model of electrostatic turbulence in three-dimensional geometry is extended to account for the impact of friction between trapped and passing particles on the radial electric field. Non-linear flux-driven simulations are carried out, and it is shown that considering the radial and temporal variations of the neoclassical friction coefficients allows for a transport barrier to be generated above a threshold of the input power

    Control of test particle transport in a turbulent electrostatic model of the Scrape Off Layer

    Get PDF
    The EĂ—B{\bm E}\times{\bm B} drift motion of charged test particle dynamics in the Scrape Off Layer (SOL)is analyzed to investigate a transport control strategy based on Hamiltonian dynamics. We model SOL turbulence using a 2D non-linear fluid code based on interchange instability which was found to exhibit intermittent dynamics of the particle flux. The effect of a small and appropriate modification of the turbulent electric potential is studied with respect to the chaotic diffusion of test particle dynamics. Over a significant range in the magnitude of the turbulent electrostatic field, a three-fold reduction of the test particle diffusion coefficient is achieved

    Neutrinos and Gamma Rays from Galaxy Clusters

    Full text link
    The next generation of neutrino and gamma-ray detectors should provide new insights into the creation and propagation of high-energy protons within galaxy clusters, probing both the particle physics of cosmic rays interacting with the background medium and the mechanisms for high-energy particle production within the cluster. In this paper we examine the possible detection of gamma-rays (via the GLAST satellite) and neutrinos (via the ICECUBE and Auger experiments) from the Coma cluster of galaxies, as well as for the gamma-ray bright clusters Abell 85, 1758, and 1914. These three were selected from their possible association with unidentified EGRET sources, so it is not yet entirely certain that their gamma-rays are indeed produced diffusively within the intracluster medium, as opposed to AGNs. It is not obvious why these inconspicuous Abell-clusters should be the first to be seen in gamma-rays, but a possible reason is that all of them show direct evidence of recent or ongoing mergers. Their identification with the EGRET gamma-ray sources is also supported by the close correlation between their radio and (purported) gamma-ray fluxes. Under favorable conditions (including a proton spectral index of 2.5 in the case of Abell 85, and sim 2.3 for Coma, and Abell 1758 and 1914), we expect ICECUBE to make as many as 0.3 neutrino detections per year from the Coma cluster of galaxies, and as many as a few per year from the Abell clusters 85, 1758, and 1914. Also, Auger may detect as many as 2 events per decade at ~ EeV energies from these gamma-ray bright clusters.Comment: Accepted for publication in Ap

    Proceedings of the sixth international coral reef symposium

    Get PDF

    Coma revealed as an extended hard X-rays source by INTEGRAL IBIS/ISGRI

    Get PDF
    Aims. We report the INTEGRAL/IBIS observations of the Coma Cluster in the hard X-ray/soft-ray domain. Methods. Since the Coma Cluster appears as an extended source, its global intensity and significance cannot be directly extracted with standard coded mask analysis. We used the method of imaging the extended sources with a coded mask telescope developed by Renaud et al. (2006). Results. The imaging capabilities and the sensitivity of the IBIS/ISGRI coded mask instrument allows us to identify for the first time the site of the emission above ~ 15 keV. We have studied the Coma Cluster morphology in the 18-30keV band and found that it follows the prediction based on X-ray observations.We also bring constraints on the non-thermal mechanism contribution at higher energies.Comment: 4 pages, 4 figures, Accepted for publication in A&A Letter

    Diffuse Gas and LMXBs in the Chandra Observation of the S0 Galaxy NGC 1553

    Full text link
    We have spatially and spectrally resolved the sources of X-ray emission from the X-ray faint S0 galaxy NGC 1553 using an observation from the Chandra X-ray Observatory. The majority (70%) of the emission in the 0.3 - 10.0 keV band is diffuse, and the remaining 30% is resolved into 49 discrete sources. Most of the discrete sources associated with the galaxy appear to be low mass X-ray binaries (LMXBs). The luminosity function of the LMXB sources is well-fit by a broken power-law with a break luminosity comparable to the Eddington luminosity for a 1.4 solar mass neutron star. It is likely that those sources with luminosities above the break are accreting black holes and those below are mostly neutron stars in binary systems. Spectra were extracted for the total emission, diffuse emission, and sum of the resolved sources; the spectral fits for all require a model including both a soft and hard component. The diffuse emission is predominately soft while the emission from the sources is mostly hard. Approximately 24% of the diffuse emission arises from unresolved LMXBs, with the remainder resulting from thermal emission from hot gas. There is a very bright source at the projected position of the nucleus of the galaxy. The spectrum and luminosity derived from this central source are consistent with it being an AGN; the galaxy also is a weak radio source. Finally, the diffuse emission exhibits significant substructure with an intriguing spiral feature passing through the center of the galaxy. The X-ray spectrum and surface brightness of the spiral feature are consistent with adiabatic or shock compression of ambient gas, but not with cooling. This feature may be due to compression of the hot interstellar gas by radio lobes or jets associated with the AGN.Comment: 23 pages using emulateapj.sty; ApJ, in press; revised version includes correction to error in the L_X,src/L_B ratio as well as other revision
    • …
    corecore