We present the results of a new Chandra study of the galaxy cluster A2626.
The radio emission of the cluster shows a complex system of four symmetric arcs
without known correlations with the X-ray emission. The mirror symmetry of the
radio arcs toward the center and the presence of two optical cores in the
central galaxy suggested that they may be created by pairs of precessing radio
jets powered by dual AGNs inside the cD galaxy. However, previous observations
failed to observe the second jetted AGN and the spectral trend due to radiative
age along the radio arcs, thus challenging this interpretation. The new Chandra
observation had several scientific objectives, including the search for the
second AGN that would support the jet precession model. We focus here on the
detailed study of the local properties of the thermal and non-thermal emission
in the proximity of the radio arcs, in order to get more insights into their
origin. We performed a standard data reduction of the Chandra dataset deriving
the radial profiles of temperature, density, pressure and cooling time of the
intra-cluster medium. We further analyzed the 2D distribution of the gas
temperature, discovering that the south-western junction of the radio arcs
surrounds the cool core of the cluster. We studied the X-ray SB and spectral
profiles across the junction, finding a cold front spatially coincident with
the radio arcs. This may suggest a connection between the sloshing of the
thermal gas and the nature of the radio filaments, raising new scenarios for
their origin. A possibility is that the radio arcs trace the projection of a
complex surface connecting the sites where electrons are most efficiently
reaccelerated by the turbulence that is generated by the gas sloshing. In this
case, diffuse emission embedded by the arcs and with extremely steep spectrum
should be most visible at very low radio frequencies.Comment: 7 pages, 7 figures. Accepted for publication on A&